Do you want to publish a course? Click here

First Estimations of Cosmological Parameters From BOOMERANG

95   0   0.0 ( 0 )
 Added by Kimberly A. Coble
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from the angular power spectrum measured in the first Antarctic flight of the BOOMERANG experiment. Within the framework of inflation-motivated adiabatic cold dark matter models, and using only weakly restrictive prior probabilites on the age of the universe and the Hubble expansion parameter $h$, we find that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density $Omega_b h^2$ above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the BOOMERANG data provide clear detections of both dark matter and dark energy contributions to the total energy density $Omega_{rm {tot}}$, independent of data from high redshift supernovae.



rate research

Read More

We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the $Lambda$CDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture.
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESAs fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base LCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. (ABRIDGED)
We use measurements of the peak photon energy and bolometric fluence of 119 gamma-ray bursts (GRBs) extending over the redshift range of $0.3399 leq z leq 8.2$ to simultaneously determine cosmological and Amati relation parameters in six different cosmological models. The resulting Amati relation parameters are almost identical in all six cosmological models, thus validating the use of the Amati relation in standardizing these GRBs. The GRB data cosmological parameter constraints are consistent with, but significantly less restrictive than, those obtained from a joint analysis of baryon acoustic oscillation and Hubble parameter measurements.
We discuss the observability of circular polarisation of the stochastic gravitational-wave background (SGWB) generated by helical turbulence following a first-order cosmological phase transition, using a model that incorporates the effects of both direct and inverse energy cascades. We explore the strength of the gravitational-wave signal and the dependence of its polarisation on the helicity fraction, $zeta_*$, the strength of the transition, $alpha$, the bubble size, $R_*$, and the temperature, $T_*$, at which the transition finishes. We calculate the prospective signal-to-noise ratios of the SGWB strength and polarisation signals in the LISA experiment, exploring the parameter space in a way that is minimally sensitive to the underlying particle physics model. We find that discovery of SGWB polarisation is generally more challenging than measuring the total SGWB signal, but would be possible for appropriately strong transitions with large bubble sizes and a substantial polarisation fraction.
Risaliti and Lusso have compiled X-ray and UV flux measurements of 1598 quasars (QSOs) in the redshift range $0.036 leq z leq 5.1003$, part of which, $z sim 2.4 - 5.1$, is largely cosmologically unprobed. In this paper we use these QSO measurements, alone and in conjunction with baryon acoustic oscillation (BAO) and Hubble parameter [$H(z)$] measurements, to constrain cosmological parameters in six different cosmological models, each with two different Hubble constant priors. In most of these models, given the larger uncertainties, the QSO cosmological parameter constraints are mostly consistent with those from the $H(z)$ + BAO data. A somewhat significant exception is the non-relativistic matter density parameter $Omega_{m0}$ where the QSO data favors $Omega_{m0} sim 0.5 - 0.6$ in most models. Consequently in joint analyses of QSO data with $H(z)$ + BAO data the one-dimensional $Omega_{m0}$ distributions shift slightly toward larger values. A joint analysis of the QSO + $H(z)$ + BAO data is consistent with the current standard model, spatially-flat $Lambda$CDM, but mildly favors closed spatial hypersurfaces and dynamical dark energy. Since the higher $Omega_{m0}$ values favored by the QSO data appear to be associated with the $z sim 2 - 5$ part of these data, and conflict somewhat with strong indications for $Omega_{m0} sim 0.3$ from most $z < 2.5$ data as well as from the cosmic microwave background anisotropy data at $z sim 1100$, in most models, the larger QSO data $Omega_{m0}$ is possibly more indicative of an issue with the $z sim 2 - 5$ QSO data than of an inadequacy of the standard flat $Lambda$CDM model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا