No Arabic abstract
We report new observations of the spectrum of Ganymede in the spectral range 1160 - 1720 A made with the Space Telescope Imaging Spectrograph (STIS) on HST on 1998 October 30. The observations were undertaken to locate the regions of the atomic oxygen emissions at 1304 and 1356 A, previously observed with the GHRS on HST, that Hall et al. (1998) claimed indicated the presence of polar aurorae on Ganymede. The use of the 2 wide STIS slit, slightly wider than the disk diameter of Ganymede, produced objective spectra with images of the two oxygen emissions clearly separated. The OI emissions appear in both hemispheres, at latitudes above 40 degrees, in accordance with recent Galileo magnetometer data that indicate the presence of an intrinsic magnetic field such that Jovian magnetic field lines are linked to the surface of Ganymede only at high latitudes. Both the brightness and relative north-south intensity of the emissions varied considerably over the four contiguous orbits (5.5 hours) of observation, presumably due to the changing Jovian plasma environment at Ganymede. However, the observed longitudinal non-uniformity in the emission brightness at high latitudes, particularly in the southern hemisphere, and the lack of pronounced limb brightening near the poles are difficult to understand with current models. In addition to observed solar HI Lyman-alpha reflected from the disk, extended Lyman-alpha emission resonantly scattered from a hydrogen exosphere is detected out to beyond two Ganymede radii from the limb, and its brightness is consistent with the Galileo UVS measurements of Barth et al. (1997).
The purpose of this HST white paper is to demonstrate that it is possible to monitor Jupiters polar haze with HST/STIS without breaking the ground screening limit for bright objects. This demonstration rests on a thorough simulation of STIS output from an existing image obtained with HST/WFPC2. It is shown that the STIS NUV-MAMA + F25CIII filter assembly provides a count rate per pixel ~11 times smaller than that obtained for one pixel of WFPC2 WF3 CCD + F218W corresponding filter. This ratio is sufficiently large to cope with the bright solar light scattered by Jupiters atmosphere, which was a lesser concern for WFPC2 CCD safety. These STIS images would provide unprecedented spatial and temporal resolution observations of small-scale stratospheric aerosol structures, possibly associated with Jupiters complex FUV aurora.
We present HST/STIS observations of the optical counterpart (OT) of the gamma-ray burster GRB 000301C obtained on 2000 March 6, five days after the burst. CCD clear aperture imaging reveals a R ~ 21.50+/-0.15 source with no apparent host galaxy. An 8000 s, 1150 < lambda/A < 3300 NUV-MAMA prism spectrum shows a relatively flat continuum (in f_lambda) between 2800 and 3300 A, with a mean flux 8.7 (+0.8,-1.6)+/- 2.6 10^(-18) ergs/s/cm^2/A, and a sharp break centered at 2797+/-25 A. We interpret it as HI Lyman break at z = 2.067+/-0.025 indicating the presence of a cloud with a HI column density log(HI) > 18 on the line-of-sight to the OT. This value is conservatively a lower limit to the GRB redshift. However, the facts that large N(HI) system are usually considered as progenitors of present day galaxies and that other OTs are found associated with star forming galaxies strongly suggest that it is the GRB redshift. In any case, this represents the largest direct redshift determination of a gamma-ray burster to date. Our data are compatible with an OT spectrum represented by a power-law with an intrinsic index alpha = 1.2((f_nu propto nu^-alpha) and no extinction in the host galaxy or with alpha = 0.5 and extinction by a SMC-like dust in the OT rest-frame with A_V = 0.15. The large N(HI) and the lack of detected host is similar to the situation for damped Ly-alpha absorbers at z > 2.
We present preliminary results on the low-redshift Lyman alpha forest as based on STIS spectra of 3C 273. A total of 121 intergalactic Lyman alpha-absorbing systems were detected, of which 60 are above the 3.5 sigma completness limit, log N(HI)~12.3. The median Doppler parameter, b=27 km/s, is similar to that seen at high redshift. However the distribution of HI column densities (dN/dN(HI) propto N(HI)^-beta) has a steeper slope, beta = 2.02 +- 0.21, than is seen at high redshift. Overall, the observed N(HI)-b distribution is consistent with that derived from a Lambda CDM hydrodynamic simulation.
The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme--adaptive-optics--fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the contrast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high contrast imaging of circumstellar disks and faint point sources with STIS. For the first time, we develop a noise model for the coronagraph, including systematic noise due to speckles, which can be used to predict the performance of future coronagraphic observations. Further, we present results from a recent calibration program that demonstrates better than $10^{-6}$ point-source contrast at 0.6, ranging to $3times10^{-5}$ point-source contrast at 0.25. These results are obtained by a combination of sub-pixel grid dithers, multiple spacecraft orientations, and post-processing techniques. Some of these same techniques will be employed by future space-based coronagraphic missions. We discuss the unique aspects of STIS coronagraphy relative to ground-based adaptive-optics--fed coronagraphs.
Roth et al (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa - spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope (HST) direct images of Europa in the far ultraviolet (FUV) as it transited the smooth face of Jupiter, in order to measure absorption from gas or aerosols beyond the Europa limb. Out of ten observations we found three in which plume activity could be implicated. Two show statistically significant features at latitudes similar to Roth et al, and the third, at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al feature, however the apparent activity appears more frequently in our data.