No Arabic abstract
High resolution FUV echelle spectra showing absorption features arising from CI and CO gas in the Beta Pictoris circumstellar (CS) disk were obtained on 1997 December 6 and 19 using the Space Telescope Imaging Spectrograph (STIS). An unsaturated spin-forbidden line of CI at 1613.376 A not previously seen in spectra of Beta Pictoris was detected, allowing for an improved determination of the column density of CI at zero velocity relative to the star (the stable component), N = (2-4) x 10^{16} cm^{-2}. Variable components with multiple velocities, which are the signatures of infalling bodies in the Beta Pictoris CS disk, are observed in the CI 1561 A and 1657 A multiplets. Also seen for the first time were two lines arising from the metastable singlet D level of carbon, at 1931 A and 1463 A The results of analysis of the CO A-X (0-0), (1-0), and (2-0) bands are presented, including the bands arising from {13}^CO, with much better precision than has previously been possible, due to the very high resolution provided by the STIS echelle gratings. Only stable CO gas is observed, with a column density N(CO) = (6.3 +/- 0.3) x 10^{14} cm{-2}. An unusual ratio of the column densities of {12}^CO to {13}^CO is found (R = 15 +/- 2). The large difference between the column densities of CI and CO indicates that photodissociation of CO is not the primary source of CI gas in the disk, contrary to previous suggestion.
The debris disk surrounding $beta$ Pictoris has a gas composition rich in carbon and oxygen, relative to solar abundances. Two possible scenarios have been proposed to explain this enrichment. The preferential production scenario suggests that the gas produced may be naturally rich in C and O, while the alternative preferential depletion scenario states that the enrichment has evolved to the current state from a gas with solar-like abundances. In the latter case, the radiation pressure from the star expels the gas outwards, leaving behind species less sensitive to stellar radiation such as C and O. Nitrogen is also not sensitive to radiation pressure due to its low oscillator strength, which would make it also overabundant under the preferential depletion scenario. As such, the abundance of N in the disk may provide clues to why C and O are overabundant. We aim to measure the N column density in the direction of $beta$ Pic, and use this information to disentangle these different scenarios explaining the C and O overabundance. Using far-UV spectroscopic data collected by the HSTs Cosmic Origins Spectrograph (COS) instrument, we analyse the spectrum and characterise the NI triplet by modelling the absorption lines. We measure the N column density in the direction of $beta$ Pic for the first time, and find it to be $log(N_{mathrm{NI}}/1,mathrm{cm}^2) = 14.9pm0.7$. The N gas is found to be consistent with solar abundances and Halley dust. The solar N abundance supports the preferential production hypothesis, in which the composition of gas in $beta$,Pic is the result of photodesorption from icy grains rich in C and O or collisional vaporisation of C and O rich dust in the disk. It does not support the hypothesis that C and O are overabundant due to the insensitivity of C and O to radiation pressure thereby leaving them to accumulate in the disk.
We present deep HST/STIS coronagraphic images of the Beta Pic debris disk obtained at two epochs separated by 15 years. The new images and the re-reduction of the 1997 data provide the most sensitive and detailed views of the disk at optical wavelengths as well as the yet smallest inner working angle optical coronagraphic image of the disk. Our observations characterize the large-scale and inner-disk asymmetries and we identify multiple breaks in the disk radial surface brightness profile. We study in detail the radial and vertical disk structure and show that the disk is warped. We explore the disk at the location of the Beta Pic b super-jupiter and find that the disk surface brightness slope is continuous between 0.5 and 2.0 arcsec, arguing for no change at the separations where Beta Pic b orbits. The two epoch images constrain the disk surface brightness evolution on orbital and radiation pressure blow-out timescales. We place an upper limit of 3% on the disk surface brightness change between 3-5 arcsec, including the locations of the disk warp, and the CO and dust clumps. We discuss the new observations in the context of high-resolution multi-wavelength images and divide the disk asymmetries in two groups: axisymmetric and non-axisymmetric. The axisymmetric structures (warp, large-scale butterfly, etc.) are consistent with disk structure models that include interactions of a planetesimal belt and a non-coplanar giant planet. The non-axisymmetric features, however, require a different explanation.
We describe and analyze HST/STIS observations of the G2 V star alpha Centauri A (alpha Cen A, HD 128620), a star similar to the Sun. The high resolution echelle spectra obtained with the E140H and E230H gratings cover the complete spectral range 1133-3150 Angstrom with a resolution of 2.6 km/s, an absolute flux calibration accurate to +/-5%, and an absolute wavelength accuracy of 0.6-1.3 km/s. We present here a study of the E140H spectrum covering the 1140-1670 Angstrom spectral range, which includes 671 emission lines representing 37 different ions and the molecules CO and H_2. For alpha Cen A and the quiet and active Sun, we intercompare the redshifts, nonthermal line widths, and parameters of two Gaussian representations of transition region lines (e.g., Si IV, C IV), infer the electron density from the O IV intersystem lines, and compare their differential emission measure distributions. One purpose of this study is to compare the alpha Cen A and solar UV spectra to determine how the atmosphere and heating processes in alpha Cen A differ from the Sun as a result of the small differences in gravity, age, and chemical composition of the two stars. A second purpose is to provide an excellent high resolution UV spectrum of a solar-like star that can serve as a proxy for the Sun observed as a point source when comparing other stars to the Sun.
Our efficient numerical approach has been applied to modeling the asymmetric circumstellar dust disk around Beta Pictoris as observed with the HST/STIS. We present a new model on the origin of the warping of the Beta Pic disk. We suggest that the observed warp is formed by the gravitational influence of a planet with a mass of about 10 masses of Earth, at a distance of 70 AU, and a small inclination ($sim 2.5^circ$) of the planetary orbit to the main dust disk. Results of our modeling are compared with the STIS observations.
(Abridged.) We present F435W (B), F606W (Broad V), and F814W (Broad I) coronagraphic images of the debris disk around Beta Pictoris obtained with HSTs Advanced Camera for Surveys. We confirm that the previously reported warp in the inner disk is a distinct secondary disk inclined by ~5 deg from the main disk. The main disks northeast extension is linear from 80 to 250 AU, but the southwest extension is distinctly bowed with an amplitude of ~1 AU over the same region. Both extensions of the secondary disk appear linear, but not collinear, from 80 to 150 AU. Within ~120 AU of the star, the main disk is ~50% thinner than previously reported. The surface-brightness profiles along the spine of the main disk are fitted with four distinct radial power laws between 40 and 250 AU, while those of the secondary disk between 80 and 150 AU are fitted with single power laws. These discrepancies suggest that the two disks have different grain compositions or size distributions. The F606W/F435W and F814W/F435W flux ratios of the composite disk are nonuniform and asymmetric about both projected axes of the disk. Within ~120 AU, the m_F435W-m_F606W and m_F435W-m_F814W colors along the spine of the main disk are ~10% and ~20% redder, respectively, than those of Beta Pic. These colors increasingly redden beyond ~120 AU, becoming 25% and 40% redder, respectively, than the star at 250 AU. We compare the observed red colors within ~120 AU with the simulated colors of non-icy grains having a radial number density ~r^-3 and different compositions, porosities, and minimum grain sizes. The observed colors are consistent with those of compact or moderately porous grains of astronomical silicate and/or graphite with sizes >0.15-0.20 um, but the colors are inconsistent with the blue colors expected from grains with porosities >90%.