No Arabic abstract
We have used a multiwavelength data set from the Canadian Galactic Plane Survey (CGPS) to study the Galactic HII region KR 140, both on the scale of the nebula itself and in the context of the star forming activity in the nearby W3/W4/W5 complex of molecular clouds and HII regions. From both radio and infrared data we have found a covering factor of about 0.5 for KR 140 and we interpret the nebula as a bowl-shaped region viewed close to face on. Extinction measurements place the region on the near side of its parent molecular cloud. The nebula is kept ionized by one O8.5 V(e) star, VES 735, which is less than a few million years old. CO data show that VES 735 has disrupted much of the original molecular cloud for which the estimated mass and density are about 5000 $M_{odot}$ and 100 cm$^{-3}$, respectively. KR 140 is isolated from the nearest star forming activity, in W3. Our data suggest that KR 140 is an example of spontaneous (i.e., non-triggered) formation of, unusually, a high mass star.
We use 2MASS and MSX infrared observations, along with new molecular line (CO) observations, to examine the distribution of young stellar objects (YSOs) in the molecular cloud surrounding the halo HII region KR 140 in order to determine if the ongoing star-formation activity in this region is dominated by sequential star formation within the photodissociation region (PDR) surrounding the HII region. We find that KR 140 has an extensive population of YSOs that have spontaneously formed due to processes not related to the expansion of the HII region. Much of the YSO population in the molecular cloud is concentrated along a dense filamentary molecular structure, traced by C18O, that has not been erased by the formation of the exciting O star. Some of the previously observed submillimetre clumps surrounding the HII region are shown to be sites of recent intermediate and low-mass star formation while other massive starless clumps clearly associated with the PDR may be the next sites of sequential star formation.
We report on a study of the high-mass star formation in the the HII region W28A2 by investigating the molecular clouds extended over ~5-10 pc from the exciting stars using the 12CO and 13CO (J=1-0) and 12CO (J=2-1) data taken by the NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with the CO intensity peaks at V_LSR ~ -4 km s$^{-1}$, 9 km s$^{-1}$ and 16 km s$^{-1}$. The highest CO intensity is detected at V_LSR ~ 9 km s$^{-1}$, where the high-mass stars with the spectral types of O6.5-B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 um infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J=2-1 to 1-0 intensity ratio shows a high value (> 0.8) toward the exciting sources for the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (V_LSR ~ 9 km s$^{-1}$) lowers down to ~0.6, suggesting self absorption by the dense gas in the near side of the +9 km s$^{-1}$ cloud. We found partly complementary gas distributions between the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, and the -4 km s$^{-1}$ and +16 km s$^{-1}$ clouds. The exciting sources are located toward the overlapping region in the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds. Similar gas properties are found in the Galactic massive star clusters, RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss a possibility of the formation of high-mass stars in the W28A2 region triggered by the cloud-cloud collision.
We report a possibility that the high-mass star located in the HII region RCW 34 was formed by a triggering induced by a collision of molecular clouds. Molecular gas distributions of the $^{12}$CO and $^{13}$CO $J=$2-1, and $^{12}$CO $J=$3-2 lines toward RCW 34 were measured by using the NANTEN2 and ASTE telescopes. We found two clouds with the velocity ranges of 0-10 km s$^{-1}$ and 10-14 km s$^{-1}$. Whereas the former cloud as massive as ~2.7 x 10$^{4}$ Msun has a morphology similar to the ring-like structure observed in the infrared wavelengths, the latter cloud with the mass of ~10$^{3}$ Msun, which has not been recognized by previous observations, distributes just likely to cover the bubble enclosed by the other cloud. The high-mass star with the spectral types of O8.5V is located near the boundary of the two clouds. The line intensity ratio of $^{12}$CO $J=$3-2 / $J=$2-1 yields high values (~1.5) in the neighborhood of the high-mass star, suggesting that these clouds are associated with the massive star. We also confirmed that the obtained position-velocity diagram shows a similar distribution with that derived by a numerical simulation of the supersonic collision of two clouds. Using the relative velocity between the two clouds (~5 km s$^{-1}$), the collisional time scale is estimated to be $sim$0.2 Myr with the assumption of the distance of 2.5 kpc. These results suggest that the high-mass star in RCW 34 was formed rapidly within a time scale of ~0.2 Myr via a triggering of cloud-cloud collision.
We present a picture of star formation around the HII region Sh2-235 (S235) based upon data on the spatial distribution of young stellar clusters and the distribution and kinematics of molecular gas around S235. We observed 13CO(1-0) and CS(2-1) emission toward S235 with the Onsala Space Observatory 20-m telescope and analysed the star density distribution with archival data from the 2MASS survey. Dense molecular gas forms a shell-like structure at the south-eastern part of S235. The young clusters found with 2MASS data are embedded in this shell. The positional relationship of the clusters, the molecular shell and the HII region indicates that expansion of S235 is responsible for the formation of the clusters. The gas distribution in the S235 molecular complex is clumpy, which hampers interpretation exclusively on the basis of the morphology of the star forming region. We use data on kinematics of molecular gas to support the hypothesis of induced star formation, and distinguish three basic types of molecular gas components. The first type is primordial undisturbed gas of the giant molecular cloud, the second type is gas entrained in motion by expansion of the HII region (this is where the embedded clusters were formed), and the third type is a fast-moving gas, which might have been accelerated by winds from the newly formed clusters. The clumpy distribution of molecular gas and its kinematics around the HII region implies that the picture of triggered star formation around S235 can be a mixture of at least two possibilities: the collect-and-collapse scenario and the compression of pre-existing dense clumps by the shock wave.
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between HII-region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. We have observed the Galactic HII region RCW120 with herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500$mu$m. We produced temperature and H$_2$ column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. The herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars.