No Arabic abstract
As part of a survey of HI 21-cm emission in the Southern Milky Way, we have detected two large shells in the interstellar neutral hydrogen near l=279 deg. The center velocities are +36 and +59 km/s, which puts the shells at kinematic distances of 7 and 10 kpc. The larger shell is about 610 pc in diameter and very empty, with density contrast of at least 15 between the middle and the shell walls. It has expansion velocity of about 20 km/s and swept up mass of several million solar masses. The energy indicated by the expansion may be as high as 2.4 X 10^53 ergs. We estimate its age to be 15 to 20 million years. The smaller shell has diameter of about 400 pc, expansion velocity about 10 km/s and swept up mass of about 10^6 solar masses. Morphologically both regions appear to be shells, with high density regions mostly surrounding the voids, although the first appears to have channels of low density which connect with the halo above and below the HI layer. They lie on the edge of the Carina arm, which suggests that they may be expanding horizontally into the interarm region as well as vertically out of the disk. If this interpretation is correct, this is the first detection of an HI chimney which has blown out of both sides of the disk.
We present results of a method for an automatic search for HI shells in 3D data cubes and apply it to the Leiden-Dwingeloo HI survey of the northern Milky Way. In the 2nd Galactic quadrant, where identifications of structures are not substantially influenced by overlapping, we find nearly 300 structures. The Galactic distribution of shells has an exponential profile in the radial direction with a scale length of 3 kpc. In the z direction, one half of the shells are found at distances smaller than 500 pc. We also calculate the energies necessary to create the shells: there are several structures with energies greater than 10 E_SN but only one with an energy exceeding 100 E_SN. Their size distribution, corrected for distance effects, is approximated by a power-law with an index 2.1. Our identifications provide a lower limit to the filling factor of shells in the outer Milky Way: f_2D = 0.4 and f_3D = 0.05.
HI shells, which may be formed by the activity of young and massive stars, or connected to energy released by interactions of high-velocity clouds with the galactic disk, may be partly responsible both for the destruction of CO clouds and for the creation of others. It is not known which effect prevails. We study the relation between HI shells and CO in the outer parts of the Milky Way, using HI and CO surveys and a catalogue of previously identified HI shells. For each individual location, the distance to the nearest HI shell is calculated and it is specified whether it lies in the interior of an HI shell, in its walls, or outside an HI shell. The method takes into account irregular shapes of HI shells. We find a lack of CO clouds in the interiors of HI shells and their increased occurrence in walls. Properties of clouds differ for different environments: interiors of HI shells, their walls, and unperturbed medium. CO clouds found in the interiors of HI shells are those that survived and were robbed of their more diffuse gas. Walls of HI shells have a high molecular content, indicative of an increased rate of CO formation. Comparing the CO fractions within HI shells and outside in the unperturbed medium, we conclude that HI shells are responsible for approx. 20 % increase in the total amount of CO in the outer Milky Way.
We analyse the all-sky Leiden/Argentina/Bonn HI survey, where we identify shells belonging to the Milky Way. We used an identification method based on the search of continuous regions of a low brightness temperature that are compatible with given properties of HI shells. We found 333 shells in the whole Galaxy. The size distribution of shells in the outer Galaxy is fitted by a power law with the coefficient of 2.6 corresponding to the index 1.8 in the distribution of energy sources. Their surface density decreases exponentially with a scale length of 2.8 kpc. The surface density of shells with radii >= 100 pc in the solar neighbourhood is around 4 per kpc^2 and the 2D porosity is approximately 0.7.
The main goal of this work is to a have a new neutral hydrogen HI supershell candidates catalog to analyze their spatial distribution in the Galaxy and to carry out a statistical study of their main properties.}{This catalog was carried out making use of the Leiden-Argentine-Bonn (LAB) survey. The supershell candidates were identified using a combination of two techniques: a visual inspection plus an automatic searching algorithm. Our automatic algorithm is able to detect both closed and open structures. A total of 566 supershell candidates were identified. Most of them (347) are located in the second Galactic quadrant, while 219 were found in the third one. About $98 , %$ of a subset of 190 structures (used to derive the statistical properties of the supershell candidates) are elliptical with a mean weighted eccentricity of $0.8 pm 0.1$, and $sim 70 ,%$ have their major axes parallel to the Galactic plane. The weighted mean value of the effective radius of the structures is $sim$ 160 pc. Owing to the ability of our automatic algorithm to detect open structures, we have also identified some galactic chimney candidates. We find an asymmetry between the second and third Galactic quadrants in the sense that in the second one we detect structures as far as 32 kpc, while for the 3rd one the farthest structure is detected at 17 kpc. The supershell surface density in the solar neighborhood is $sim$ 8 kpc$^{-2}$, and decreases as we move farther away form the Galactic center. We have also compared our catalog with those by other authors.
We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy ($216.5^{circ} lesssim ell lesssim 225.5^{circ}$ and $-2^{circ} lesssim b lesssim 0^{circ}$) as a part of the Hi-GAL survey. The maps between 70 and 500 $mu$m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances, so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution, that we separate in 255 proto-stellar and 688 starless. Both typologies are found in association with all the distance components observed in the field, up to $sim 5.8$ kpc, testifying the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation, based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm ($dlesssim1.5$ kpc) we study the mass function, whose high-mass end shows a power-law $N(log M) propto M^{-1.0 pm 0.2}$. Finally, we use a luminosity vs mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not started yet.