Do you want to publish a course? Click here

Slim Disk Model for Soft X-Ray Excess and Variability of Narrow-Line Seyfert 1 Galaxies

236   0   0.0 ( 0 )
 Added by Shin Mineshige
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Narrow-line Seyfert 1 galaxies (NLS1s) exhibit extreme soft X-ray excess and large variability. We argue that both features can be basically accounted for by the slim disk model. We assume that a central black-hole mass in NLS1 is relatively small, $M sim 10^{5-7}M_odot$, and that a disk shines nearly at the Eddington luminosity, $L_{rm E}$. Then, the disk becomes a slim disk and exhibits the following distinctive signatures: (1) The disk luminosity (particularly of X-rays) is insensitive to mass-flow rates, $dot M$, since the generated energy is partly carried away to the black hole by trapped photons in accretion flow. (2) The spectra are multi-color blackbody. The maximum blackbody temperature is $T_{rm bb} simeq 0.2(M/10^5 M_odot)^{-1/4}$ keV, and the size of the blackbody emitting region is small, $r_{rm bb} lsim 3 r_{rm S}$ (with $r_{rm S}$ being Schwarzschild radius) even for a Schwarzschild black hole. (3) All the ASCA observation data of NLS1s fall onto the region of $dot M/(L_{rm E}/c^2)>10$ (with $L_{rm E}$ being the Eddington luminosity) on the ($r_{rm bb},T_{rm bb}$) plane, supporting our view that a slim disk emits soft X-rays at $sim L_{rm E}$ in NLS1s. (4) Magnetic energy can be amplified, at most, up to the equipartition value with the trapped radiation energy which greatly exceeds radiation energy emitted from the disk. Hence, energy release by consecutive magnetic reconnection will give rise to substantial variability in soft X-ray emission.

rate research

Read More

88 - L. C. Gallo 2018
It is arguably in the X-ray regime that Narrow-line Seyfert 1 galaxies (NLS1s) exhibit the most extreme behaviour. Spectral complexity, rapid and large amplitude flux variations, and exceptional spectral variability are well known characteristics. However, NLS1s are not eccentric, but form a continuous sequence with typical Seyfert 1 galaxies. Understanding the extreme behaviour displayed by NLS1s will provide insight to the general AGN phenomenon. In this review, I will examine some of the important NLS1 X-ray discoveries over the past twenty years. I will then explore recent work that looks at the nature of the primary X-ray source (i.e. the corona) in NLS1s, demonstrating how the corona can be compact, dynamic, and in some cases consistent with collimated outflow. X-ray observations of NLS1s will be key in determining the nature of the corona, resolving the disc-jet connection, and determining the origin of the radio loud/quiet dichotomy in AGN.
102 - G. C. Dewangan 2007
We investigate the origin of the soft X-ray excess emission from narrow-line Seyfert 1 galaxies Akn564 and Mrk1044 using XMM-Newton observations. We find clear evidence for time delays between the soft and hard X-ray emission from Akn564 based on a 100ks long observation. The variations in the 4-10keV band lag behind that in the 0.2-0.5keV band by 1768+/-122s. The full band power density spectrum (PDS) of Akn~564 has a break at ~1.2e-3Hz with power-law indices of ~1 and ~3 below and above the break. The hard (3-10keV) band PDS is stronger and flatter than that in the soft (0.2-0.5keV) band. Based on a short observation of Mrk1044, we find no correlation between the 0.2-0.3keV and 5-10keV bands at zero lag. These observations imply that the soft excess is not the reprocessed hard X-ray emission. The high resolution spectrum of Akn564 obtained with the RGS shows evidence for a highly ionized and another weakly ionized warm absorber medium. The smeared wind and blurred ionized reflection models do not describe the pn data adequately. The spectrum is consistent with a complex model consisting of optically thick Comptonization in a cool plasma for the soft excess and a steep power-law, modified by two warm absorber media as inferred from the RGS data and the foreground Galactic absorption. The smeared wind and optically thick Comptonization models both describe the spectrum of Mrk1044 satisfactorily, but the ionized reflection model requires extreme parameters. The data suggest two component corona -- a cool, optically thick corona for the soft excess and a hot corona for the power-law component. The existence of a break in the soft band PDS suggests a compact cool corona that can either be an ionized surface of the inner disk or an inner optically thick region coupled to a truncated disk.
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emitting, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).
385 - G. Hasinger 2000
The ROSAT Ultradeep HRI survey in the Lockman Hole contains a complete sample of 91 X-ray sources with fluxes in the 0.5-2 keV band larger than 1.2 times 10e-15 erg cm-2 s-1, where over about 75 per cent of the sources are quasars or Seyfert galaxies. During the course of our optical identification work, we have obtained optical spectra of 67 narrow emission line galaxies (NELG), which are physically not associated with the X-ray sources. We have derived the equivalent width (EW) and the full width at half maximum (FWHM) for the most prominent emission lines of 41 quasars and Seyfert galaxies taken from the ROSAT Deep Survey (RDS), which has a flux limit of 5.5 times 10e-15 erg cm-2 s-1 in the 0.5-2.0 keV band. Furthermore we have obtained the EW and FWHM values of the field NELGs. Here we present the spectroscopic discrimination between RDS Seyfert galaxies and field galaxies (NELG). The analysis of the emission lines has revealed that a single object out of 69 spectroscopically identified AGN fits the optical criteria of Narrow-Line Seyfert 1 galaxies (NLS1). This may indicate that NLS1 contribute only marginally to the soft X-ray background, but we can not exclude a possible larger contribution.
We studied optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z<0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the H-beta line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power suggesting jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا