Do you want to publish a course? Click here

Polaris: astrometric orbit, position, and proper motion

417   0   0.0 ( 0 )
 Added by Christian Dettbarn
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the astrometric orbit of the photo-center of the close pair alpha UMi AP (=alpha UMi Aa) of the Polaris multiple stellar system. The orbit is based on the spectroscopic orbit of the Cepheid alpha UMi A (orbital period of AP: 29.59 years), and on the difference Delta mu between the quasi-instantaneously measured HIPPARCOS proper motion of Polaris and the long-term-averaged proper motion given by the FK5. There remains an ambiguity in the inclination i of the orbit, since Delta mu cannot distinguish between a prograde orbit (i=50.1 deg) and a retrograde one (i=130.2 deg). Available photographic observations of Polaris favour strongly the retrograde orbit. For the semi-major axis of the photo-center of AP we find about 29 milliarcsec (mas). For the component P, we estimate a mass of 1.5 solar masses and a magnitude difference with respect to the Cepheid of 6.5 mag. The present separation between A and P should be about 160 mas. We obtain the proper motion of the center-of-mass of alpha UMi AP with a mean error of about 0.45 mas/year. Using the derived astrometric orbit, we find the position of the center-of-mass at the epoch 1991.31 with an accuracy of about 3.0 mas. Our ephemerides for the orbital correction, required for going from the position of the center-of-mass to the instantaneous position of the photo-center of AP at an arbitrary epoch, have a typical uncertainty of 5 mas. For epochs which differ from the HIPPARCOS epoch by more than a few years, a prediction for the actual position of Polaris based on our results should be significantly more accurate than using the HIPPARCOS data in a linear prediction, since the HIPPARCOS proper motion contains the instantaneous orbital motion of about 4.9 mas/year = 3.1 km/s. Finally we derive the galactic space motion of Polaris.



rate research

Read More

We provide a scheme to correct asteroid astrometric observations for star catalog systematic errors due to inaccurate star positions and proper motions. As reference we select the most accurate stars in the PPMXL catalog, i.e., those based on 2MASS astrometry. We compute position and proper motion corrections for 19 of the most used star catalogs. The use of these corrections provides better ephemeris predictions and improves the error statistics of astrometric observations, e.g., by removing most of the regional systematic errors previously seen in Pan-STARRS PS1 asteroid astrometry. The correction table is publicly available at ftp://ssd.jpl.nasa.gov/pub/ssd/debias/debias_2014.tgz and can be freely used in orbit determination algorithms to obtain more reliable asteroid trajectories.
139 - Sangmo Tony Sohn 2012
We present the first absolute proper motion measurement of Leo I, based on two epochs of HST ACS/WFC images separated by ~5 years. The average shift of Leo I stars with respect to ~100 background galaxies implies a proper motion of (mu_W, mu_N) = (0.1140 +/- 0.0295, -0.1256 +/- 0.0293) mas/yr. The implied Galactocentric velocity vector, corrected for the reflex motion of the Sun, has radial and tangential components V_rad = 167.9 +/- 2.8 km/s and V_tan = 101.0 +/- 34.4 km/s, respectively. We study the detailed orbital history of Leo I by solving its equations of motion backward in time for a range of plausible mass models for the Milky Way and its surrounding galaxies. Leo I entered the Milky Way virial radius 2.33 +/- 0.21 Gyr ago, most likely on its first infall. It had a pericentric approach 1.05 +/- 0.09 Gyr ago at a Galactocentric distance of 91 +/- 36 kpc. We associate these time scales with characteristic time scales in Leo Is star formation history, which shows an enhanced star formation activity ~2 Gyr ago and quenching ~1 Gyr ago. There is no indication from our calculations that other galaxies have significantly influenced Leo Is orbit, although there is a small probability that it may have interacted with either Ursa Minor or Leo II within the last ~1 Gyr. For most plausible Milky Way masses, the observed velocity implies that Leo I is bound to the Milky Way. However, it may not be appropriate to include it in models of the Milky Way satellite population that assume dynamical equilibrium, given its recent infall. Solution of the complete (non-radial) timing equations for the Leo I orbit implies a Milky Way mass M_MW,vir = 3.15 (-1.36, +1.58) x 10^12 Msun, with the large uncertainty dominated by cosmic scatter. In a companion paper, we compare the new observations to the properties of Leo I subhalo analogs extracted from cosmological simulations.
Astrometric positions of moving objects in the Solar System have been measured using a variety of star catalogs in the past. Previous work has shown that systematic errors in star catalogs can affect the accuracy of astrometric observations. That, in turn, can influence the resulting orbit fits for minor planets. In order to quantify these systematic errors, we compare the positions and proper motion of stellar sources in the most utilized star catalogs to the second release of the Gaia star catalog. The accuracy of Gaia astrometry allows us to unambiguously identify local biases and derive a scheme that can be used to correct past astrometric observations of solar system objects. Here we provide a substantially improved debiasing scheme for 26 astrometric catalogs that were extensively used in minor planet astrometry. Revised corrections near the galactic center eliminate artifacts that could be traced back to reference catalogs used in previous debiasing schemes. Median differences in stellar positions between catalogs now tend to be on the order of several tens of milliarcseconds (mas) but can be as large as 175 mas. Median stellar proper motion corrections scatter around 0.3 mas/yr and range from 1 to 4 mas/yr for star catalogs with and without proper motion, respectively. The tables in this work are meant to be applied to existing optical observations. They are not intended to correct new astrometric measurments as those should make use of the Gaia astrometric catalog. Since previous debiasing schemes already reduced systematics in past observations to a large extent, corrections beyond the current work may not be needed in the foreseeable future.
We have used the Very Large Array, linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 19 radio stars in the International Celestial Reference Frame (ICRF). The positions of these stars were directly linked to the positions of distant quasars through phase referencing observations. The positions of the ICRF quasars are known to 0.25 mas, thus providing an absolute reference at the angular resolution of our radio observations. Average values for the errors in our derived positions for all sources were 13 mas and 16 mas in R.A. and declination respectively, with accuracies approaching 1-2 mas for some of the stars observed. Differences between the ICRF positions of the 38 quasars, and those measured from our observations showed no systematic offsets, with mean values of -0.3 mas in R.A. and -1.0 mas in declination. Standard deviations of the quasar position differences of 17 mas and 11 mas in R.A. and declination respectively, are consistent with the mean position errors determined for the stars. Our measured positions were combined with previous Very Large Array measurements taken from 1978-1995 to determine the proper motions of 15 of the stars in our list. With mean errors of approximately 1.6 mas/yr, the accuracies of our proper motions approach those derived from Hipparcos, and for a few of the stars in our program, are better than the Hipparcos values. Comparing the positions of our radio stars with the Hipparcos catalog, we find that at the epoch of our observations, the two frames are aligned to within formal errors of approximately 3 mas. This result confirms that the Hipparcos frame is inertial at the expected level.
We present an analysis of the proper motion of the Andromeda galaxy (M31), based on the Early Third Data Release of the Gaia mission. We use the Gaia photometry to select young blue main sequence stars, and apply several quality cuts to obtain clean samples of these tracers. After correcting the proper motion measurements for the internal rotation of the M31 disk motion, we derive an apparent motion of 52.5 +/- 5.8 muas/yr with respect to the Gaia reference frame, or 61.9 +/- 9.7 muas/yr after applying a zero-point correction determined from quasars within 20 degrees from M31 and a correction from systemic biases. Accounting for the Solar reflex motion we deduce a relative velocity between Andromeda and the Milky way (in a non-rotating frame at the current location of the Sun) of 42.2 +/- 39.3 km/s along right ascension (40.0 +/- 39.3 km/s along galactic longitude) and -59.4 +/- 30.3 km/s along declination (-60.9 +/- 30.3 km/s along galactic latitude), with a total transverse velocity of V_trans = 82.4 +/- 31.2 km/s. These values are consistent with (but more accurate than) earlier Hubble Space Telescope measurements that predict a future merger between the two galaxies. We also note a surprisingly large difference in the derived proper motion between the blue stars in M31 and samples of red stars that appear to lie in that galaxy. We propose several hypotheses to explain the discrepancy but found no clear evidence with the current data to privilege any one of them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا