Do you want to publish a course? Click here

Discovery of a Color-Selected Quasar at z=5.50

53   0   0.0 ( 0 )
 Added by Daniel Stern
 Publication date 2000
  fields Physics
and research's language is English
 Authors Daniel Stern




Ask ChatGPT about the research

We present observations of RD J030117+002025, a quasar at z=5.50 discovered from deep, multi-color, ground-based observations covering 74 square arcmin. This is the most distant quasar or AGN currently known. The object was targeted as an R-band dropout, with R(AB)>26.3 (3-sigma limit in a 3 arcsec diameter region), I(AB)=23.8, and z(AB)=23.4. The Keck/LRIS spectrum shows broad Lyman-alpha/NV emission and sharp absorption decrements from the highly-redshifted hydrogen forests. The fractional continuum depression due to the Lyman-alpha forest is D(A)=0.90. RD J030117+002025 is the least luminous, high-redshift quasar known (M(B)~-22.7).



rate research

Read More

Strong gravitational lensing provides a powerful probe of the physical properties of quasars and their host galaxies. A high fraction of the most luminous high-redshift quasars was predicted to be lensed due to magnification bias. However, no multiple imaged quasar was found at z>5 in previous surveys. We report the discovery of J043947.08+163415.7, a strongly lensed quasar at z=6.51, the first such object detected at the epoch of reionization, and the brightest quasar yet known at z>5. High-resolution HST imaging reveals a multiple imaged system with a maximum image separation theta ~ 0.2, best explained by a model of three quasar images lensed by a low luminosity galaxy at z~0.7, with a magnification factor of ~50. The existence of this source suggests that a significant population of strongly lensed, high redshift quasars could have been missed by previous surveys, as standard color selection techniques would fail when the quasar color is contaminated by the lensing galaxy.
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-$alpha$ line redshifted to $sim$ 0.9 microns at z>6.5. Here, we report the discovery of a very Lyman-$alpha$ luminous quasar, PSO J006.1240+39.2219 at redshift z=6.618, selected based on its red colour and multi-epoch detection of the Lyman-$alpha$ emission in a single near-infrared band. The Lyman-$alpha$-line luminosity of PSO J006.1240+39.2219 is unusually high and estimated to be 0.8$times$10$^{12}$ Solar luminosities (about 3% of the total quasar luminosity). The Lyman-$alpha$ emission of PSO J006.1240+39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-$alpha$ line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increased dramatically over the last few years, but previously only three radio-loud (R2500>10) sources had been reported at z>6, with the most distant being a quasar at z=6.18. Here we present the discovery and characterization of P172+18, a radio-loud quasar at z=6.823. This source has an MgII-based black hole mass of ~3x10^8 Msun and is one of the fastest accreting quasars, consistent with super-Eddington accretion. The ionized region around the quasar is among the largest measured at these redshifts, implying an active phase longer than the average lifetime of the z>6 quasar population. From archival data, there is evidence that its 1.4 GHz emission has decreased by a factor of two over the last two decades. The quasars radio spectrum between 1.4 and 3.0 GHz is steep (alpha=-1.31) and has a radio-loudness parameter R2500~90. A second steep radio source (alpha=-0.83) of comparable brightness to the quasar is only 23.1 away (~120 kpc at z=6.82; projection probability <2%), but shows no optical or near-infrared counterpart. Further follow-up is required to establish whether these two sources are physically associated.
We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower luminosity than do the other known quasars at z > 7. The rest-frame ultraviolet absolute magnitude is M1450 = -24.13 +/- 0.08 mag and the bolometric luminosity is Lbol = (1.4 +/- 0.1) x 10^{46} erg/s. Its spectrum in the optical to near-infrared shows strong emission lines, and shows evidence for a fast gas outflow, as the C IV line is blueshifted and there is indication of broad absorption lines. The Mg II-based black hole mass is Mbh = (3.3 +/- 2.0) x 10^8 Msun, thus indicating a moderate mass accretion rate with an Eddington ratio 0.34 +/- 0.20. It is the first z > 7 quasar with sub-Eddington accretion, besides being the third most distant quasar, known to date. The luminosity and black hole mass are comparable to, or even lower than, those measured for the majority of low-z quasars discovered by the Sloan Digital Sky Survey, and thus this quasar likely represents a z > 7 counterpart to quasars commonly observed in the low-z universe.
Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars ($M_{1450}>-24$ mag) at $z gtrsim6$, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z~6 in a 12.5 deg$^{2}$ region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at $sim8443~rm{AA}$, with emission lines redshifted to $z=5.944 pm 0.002$ and rest-frame ultraviolet continuum magnitude $M_{1450}=-23.59pm0.10$ AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z~6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars . This suggests that the number of $M_{1450}sim-23$ mag quasars at z~6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا