No Arabic abstract
SAX J1819.3-2525 is a nearby X-ray transient which exhibited a fast and large X-ray outburst on Sep. 15, 1999 (Smith et al. 1999). The Wide Field Cameras and the Narrow Field Instruments (NFI) on board BeppoSAX observed SAX J1819.3-2525 at various stages of its activity before that, in the spring and fall of 1999. The fluxes range between 0.012 and 0.3 Crab units (2-10 keV). The NFI observation is unique because it is the longest semi-continuous observation of SAX J1819.3-2525 so far, and it offers a study of the spectrum at a relatively high resolution of 8% full width at half maximum at 6 keV. We discuss the observations with emphasis on the X-ray spectrum. A strong Fe-K emission line was detected in SAX J1819.3-2525 with an equivalent width between 0.3 and 1 keV. The line energy is up to 6.85 +/- 0.02 keV and suggests the presence of highly ionized iron. We identify this as fluorescent emission from a photo-ionized plasma. The continuum spectrum is typical for a low-mass X-ray binary in which emission from an accretion disk corona plays an important role. There is no sign of an eclipse or periodic signal due to the binary orbit in this exposure, despite the fact that the twin jets seen at radio wavelengths suggest a high inclination angle.
In the microquasar V4641 Sgr the spin of the black hole is thought to be misaligned with the binary orbital axis. The accretion disc aligns with the black hole spin by the Lense-Thirring effect near to the black hole and further out becomes aligned with the binary orbital axis. The inclination of the radio jets and the Fe$Kalpha$ line profile have both been used to determine the inclination of the inner accretion disc but the measurements are inconsistent. Using a steady state analytical warped disc model for V4641 Sgr we find that the inner disc region is flat and aligned with the black hole up to about $900 R_{rm g}$. Thus if both the radio jet and fluorescent emission originates in the same inner region then the measurements of the inner disc inclination should be the same.
We report on detailed spectroscopic studies performed for the secondary star in the black hole binary (micro-quasar) V4641 Sgr in order to examine its surface chemical composition and to see if its surface shows any signature of pollution by ejecta from a supernova explosion. High-resolution spectra of V4641 Sgr observed in the quiescent state in the blue-visual region are compared with those of the two bright well-studied B9 stars (14 Cyg and $ u$ Cap) observed with the same instrument. The effective temperature of V4641 Sgr (10500 $pm$ 200 K) is estimated from the strengths of He~{sc i} lines, while its rotational velocity, $it v$ sin $it i$ (95 $pm$ 10 km s${}^{-1}$), is estimated from the profile of the Mg~{sc ii} line at 4481 AA. We obtain abundances of 10 elements and find definite over-abundances of N (by 0.8 dex or more) and Na (by 0.8 dex) in V4641 Sgr. From line-by-line comparisons of eight other elements (C, O, Mg, Al, Si, Ti, Cr, and Fe) between V4641 Sgr and the two reference stars, we conclude that there is no apparent difference in the abundances of these elements between V4641 Sgr and the two normal late B-type stars, which have been reported to have solar abundances. An evolutionary model of a massive close binary system has been constructed to explain the abundances observed in V4641 Sgr. The model suggests that the progenitor of the black hole forming supernova was as massive as ~ 35 Msun on the main-sequence and, after becoming a ~ 10 Msun He star, underwent dark explosion which ejected only N and Na-rich outer layer of the He star without radioactive $^{56}$Ni.
We investigated the optical, X-ray, and gamma-ray variability of the pulsar SAX J2103.5+4545. Our timing and spectral analyses of the X-ray and gamma-ray emissions from the source using RXTE and INTEGRAL data show that the shape of its spectrum in the energy range 3 -- 100 keV is virtually independent of its intensity and the orbital phase. Based on XMM-Newton data, we accurately (5 arcsec) localized the object and determined the optical counterpart in the binary. We placed upper limits on the variability of the latter in the R band and the H-alpha line on time scales of the orbital and pulse periods, respectively.
Results of a 1997 September 9-10 BeppoSAX observation of the 5.57 hr low-mass X-ray binary (LMXRB) X1822-371 are presented. The 0.3-40 keV spectrum is unusually complex and cannot be fit by any of the standard models applied to other LMXRB. At least two components are required. One component has a shape consistent with that expected from the Comptonization of an input soft (Wein) spectrum while the other, contributing ~40% of the 1-10 keV flux, is consistent with being a blackbody. In addition, there is a ``dip in the spectrum which can be modeled by a 1.33 +0.05 -0.11 keV absorption edge with an optical depth, tau, of 0.28 +/- 0.06. If the same model is fit to ASCA Solid-State Imaging Spectrometer spectra obtained in 1993 and 1996, then reasonable fits are also obtained, with a similar absorption feature required. The nature of this feature is highly uncertain; its energy corresponds to the K-edges of highly ionized Ne x and neutral Mg, or to an L-edge of moderately ionized Fe. Surprisingly, no strong (tau > 0.05) Fe-K or (tau > 0.18) O-K edges are visible. The folded lightcurve of X1822-371 is similar to previous observations, except that no strong softening is seen near the eclipse. An updated orbital ephemeris is provided.
We present an X-ray spectral analysis of the high-mass binary 4U~1700-37 during its hard-soft state evolution. We use the BeppoSAX, Suzaku and RXTE (Rossi X-ray Timing Explorer), Suzaku and BeppoSAX observations for this investigation. We argue that the X-ray broad-band spectra during all spectral states can be adequately reproduced by a model, consisting of a low-temperature Blackbody component, two Comptonized components both due to the presence of a Compton cloud (CC) that up-scatters seed photons of $T_{s1}$~< 1.4 keV, and $T_{s2}<$1 keV, and an iron-line component. We find using this model that the photon power-law index is almost constant, $Gamma_{1}sim 2$ for all spectral states. However, $Gamma_{2}$ shows a behavior depending on the spectral state. Namely, $Gamma_{2}$ is quasi-constant at the level of $Gamma_{2}sim 2$ while the CC plasma temperature $kT^{(2)}_e$ is less than 40 keV; on the other hand, $Gamma_{2}$ is in the range of $1.3<Gamma_{2}<2$, when $kT^{(2)}_e$ is greater than 40 keV. We explain this quasi-stability of $Gamma$ during most of hard-soft transitions of 4U~1700-37 in a framework of the model in which the resulting spectrum is described by two Comptonized components. We find that these Comptonized spectral components of the HMXB 4U~1700-37 are similar to those previously found in NS sources. This index dependence versus both mass accretion rate and $kT_e$ revealed in 4U~1700-37 is a universal observational evidence for the presence of a NS in 4U 1700-37.