We report some numerical simulations to investigate the existence of a self-organized critical (SOC) state in a random-neighbor version of the OFC model for a range of parameters corresponding to a non-conservative case. In contrast to a recent work, we do not find any evidence of SOC. We use a more realistic distribution of energy among sites to perform some analytical calculations that agree with our numerical conclusions.
We reconsider the treatment of Lise and Jensen (Phys. Rev. Lett. 76, 2326 (1996)) on the random neighbor Olami-Feder-Christensen stik-slip model, and examine the strong dependence of the results on the approximations used for the distribution of states p(E).
The well known Sandpile model of self-organized criticality generates avalanches of all length and time scales, without tuning any parameters. In the original models the external drive is randomly selected. Here we investigate a drive which depends on the present state of the system, namely the effect of favoring sites with a certain height in the deposition process. If sites with height three are favored, the system stays in a critical state. Our numerical results indicate the same universality class as the original model with random depositition, although the stationary state is approached very differently. In constrast, when favoring sites with height two, only avalanches which cover the entire system occur. Furthermore, we investigate the distributions of sites with a certain height, as well as the transient processes of the different variants of the external drive.
Stationarity of the constituents of the body and of its functionalities is a basic requirement for life, being equivalent to survival in first place. Assuming that the resting state activity of the brain serves essential functionalities, stationarity entails that the dynamics of the brain needs to be regulated on a time-averaged basis. The combination of recurrent and driving external inputs must therefore lead to a non-trivial stationary neural activity, a condition which is fulfilled for afferent signals of varying strengths only close to criticality. In this view, the benefits of working vicinity of a second-order phase transition, such as signal enhancements, are not the underlying evolutionary drivers, but side effects of the requirement to keep the brain functional in first place. It is hence more appropriate to use the term self-regulated in this context, instead of self-organized.
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attacted much comment, ranging from the very positive to the polemical. The other papers in this special issue (Aschwanden et al, 2014; McAteer et al, 2014; Sharma et al, 2015) showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Baks own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner, 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfelds original papers.
The concept of percolation is combined with a self-consistent treatment of the interaction between the dynamics on a lattice and the external drive. Such a treatment can provide a mechanism by which the system evolves to criticality without fine tuning, thus offering a route to self-organized criticality (SOC) which in many cases is more natural than the weak random drive combined with boundary loss/dissipation as used in standard sand-pile formulations. We introduce a new metaphor, the e-pile model, and a formalism for electric conduction in random media to compute critical exponents for such a system. Variations of the model apply to a number of other physical problems, such as electric plasma discharges, dielectric relaxation, and the dynamics of the Earths magnetotail.
S. T. R. Pinho
,C. P. C. Prado
,
.
(1997)
.
"Absence of self-organized criticality in a random-neighbor version of the OFC stick-slip model"
.
Carmen P. C. do Prado
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا