In this work we compare the spectral properties of the daily medium temperature fluctuations with the experimental results of the Chicago Group, in which the local temperature fluctuations were measured in a helium cell. The results suggest that the dynamics of the daily temperature fluctuations is determined by the oft turbulent state of the atmospheric boundary layer, which state is significantly different from low dimensional chaos.
We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude-resolution. Using a 20000-separation double- star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilisation. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterisation. The instrument was built as part of the Ground Layer Turbulence Monitoring Campaign on Mauna Kea for Gemini Observatory.
We develop a novel data-driven approach to modeling the atmospheric boundary layer. This approach leads to a nonlocal, anisotropic synthetic turbulence model which we refer to as the deep rapid distortion (DRD) model. Our approach relies on an operator regression problem which characterizes the best fitting candidate in a general family of nonlocal covariance kernels parameterized in part by a neural network. This family of covariance kernels is expressed in Fourier space and is obtained from approximate solutions to the Navier--Stokes equations at very high Reynolds numbers. Each member of the family incorporates important physical properties such as mass conservation and a realistic energy cascade. The DRD model can be calibrated with noisy data from field experiments. After calibration, the model can be used to generate synthetic turbulent velocity fields. To this end, we provide a new numerical method based on domain decomposition which delivers scalable, memory-efficient turbulence generation with the DRD model as well as others. We demonstrate the robustness of our approach with both filtered and noisy data coming from the 1968 Air Force Cambridge Research Laboratory Kansas experiments. Using this data, we witness exceptional accuracy with the DRD model, especially when compared to the International Electrotechnical Commission standard.
The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.
Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce the influence of turbulence to a certain extent and reconstruct high-resolution images. The result is backed up by numerical simulations, in which turbulence-induced phase perturbations are simulated by random phase screens inserting propagation paths.
The boundary layer of a finite domain [a, b] covers mesoscopic lateral neighbourhoods, inside [a, b], of the endpoints a and b. The correct diagnostic of the integrand behaviour at a and b, based on its sampling inside the boundary layer, is the first from a set of hierarchically ordered criteria allowing a priori Bayesian inference on efficient mesh generation in automatic adaptive quadrature.