No Arabic abstract
A dual frames multiplier is an operator consisting of analysis, multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames in a Hilbert space, respectively. In this paper we investigate the spectra of some dual frames multipliers giving, in particular, conditions to be at most countable. The contribution extends the results available in literature about the spectra of Bessel multipliers with symbol decaying to zero and of multipliers of dual Riesz bases.
The main purpose of the paper is to give a characterization of all compactly supported dual windows of a Gabor frame. As an application, we consider an iterative procedure for approximation of the canonical dual window via compactly supported dual windows on every step. In particular, the procedure allows to have approximation of the canonical dual window via dual windows from certain modulation spaces or from the Schwartz space.
Inspired by a recent work about distribution frames, the definition of multiplier operator is extended in the rigged Hilbert spaces setting and a study of its main properties is carried on. In particular, conditions for the density of domain and boundedness are given. The case of Riesz distribution bases is examined in order to develop a symbolic calculus.
Parseval frames have particularly useful properties, and in some cases, they can be used to reconstruct signals which were analyzed by a non-Parseval frame. In this paper, we completely describe the degree to which such reconstruction is feasible. Indeed, notice that for fixed frames $cF$ and $cX$ with synthesis operators $F$ and $X$, the operator norm of $FX^*-I$ measures the (normalized) worst-case error in the reconstruction of vectors when analyzed with $cX$ and synthesized with $cF$. Hence, for any given frame $cF$, we compute explicitly the infimum of the operator norms of $FX^*-I$, where $cX$ is any Parseval frame. The $cX$s that minimize this quantity are called Parseval quasi-dual frames of $cF$. Our treatment considers both finite and infinite Parseval quasi-dual frames.
In this paper we consider two problems in frame theory. On the one hand, given a set of vectors $mathcal F$ we describe the spectral and geometrical structure of optimal completions of $mathcal F$ by a finite family of vectors with prescribed norms, where optimality is measured with respect to majorization. In particular, these optimal completions are the minimizers of a family of convex functionals that include the mean square error and the Bendetto-Fickus frame potential. On the other hand, given a fixed frame $mathcal F$ we describe explicitly the spectral and geometrical structure of optimal frames $mathcal G$ that are in duality with $mathcal F$ and such that the Frobenius norms of their analysis operators is bounded from below by a fixed constant. In this case, optimality is measured with respect to submajorization of the frames operators. Our approach relies on the description of the spectral and geometrical structure of matrices that minimize submajorization on sets that are naturally associated with the problems above.
In this article we examine Dirichlet type spaces in the unit polydisc, and multipliers between these spaces. These results extend the corresponding work of G. D. Taylor in the unit disc. In addition, we consider functions on the polydisc whose restrictions to lower dimensional polydiscs lie in the corresponding Dirichet type spaces. We see that such functions need not be in the Dirichlet type space of the whole polydisc. Similar observations are made regarding multipliers.