NMR of $^{31}$P Nuclear Spin Singlet States in Organic Diphosphates


Abstract in English

$^{31}$P NMR and MRI are commonly used to study organophosphates that are central to cellular energy metabolism. In some molecules of interest, such as adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD), pairs of coupled $^{31}$P nuclei in the diphosphate moiety should enable the creation of nuclear spin singlet states, which may be long-lived and can be selectively detected via quantum filters. Here, we show that $^{31}$P singlet states can be created on ADP and NAD, but their lifetimes are shorter than T$_{1}$ and are strongly sensitive to pH. Nevertheless, the singlet states were used with a quantum filter to successfully isolate the $^{31}$P NMR spectra of those molecules from the adenosine triphosphate (ATP) background signal.

Download