Do you want to publish a course? Click here

Rotation Averaging in a Split Second: A Primal-Dual Method and a Closed-Form for Cycle Graphs

260   0   0.0 ( 0 )
 Added by Gabriel Moreira
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A cornerstone of geometric reconstruction, rotation averaging seeks the set of absolute rotations that optimally explains a set of measured relative orientations between them. In spite of being an integral part of bundle adjustment and structure-from-motion, averaging rotations is both a non-convex and high-dimensional optimization problem. In this paper, we address it from a maximum likelihood estimation standpoint and make a twofold contribution. Firstly, we set forth a novel initialization-free primal-dual method which we show empirically to converge to the global optimum. Further, we derive what is to our knowledge, the first optimal closed-form solution for rotation averaging in cycle graphs and contextualize this result within spectral graph theory. Our proposed methods achieve a significant gain both in precision and performance.



rate research

Read More

118 - Yu Chen , Ji Zhao , Laurent Kneip 2021
We address rotation averaging (RA) and its application to real-world 3D reconstruction. Local optimisation based approaches are the de facto choice, though they only guarantee a local optimum. Global optimisers ensure global optimality in low noise conditions, but they are inefficient and may easily deviate under the influence of outliers or elevated noise levels. We push the envelope of rotation averaging by leveraging the advantages of a global RA method and a local RA method. Combined with a fast view graph filtering as preprocessing, the proposed hybrid approach is robust to outliers. We further apply the proposed hybrid rotation averaging approach to incremental Structure from Motion (SfM), the accuracy and robustness of SfM are both improved by adding the resulting global rotations as regularisers to bundle adjustment. Overall, we demonstrate high practicality of the proposed method as bad camera poses are effectively corrected and drift is reduced.
We consider a distributed optimization problem over a network of agents aiming to minimize a global objective function that is the sum of local convex and composite cost functions. To this end, we propose a distributed Chebyshev-accelerated primal-dual algorithm to achieve faster ergodic convergence rates. In standard distributed primal-dual algorithms, the speed of convergence towards a global optimum (i.e., a saddle point in the corresponding Lagrangian function) is directly influenced by the eigenvalues of the Laplacian matrix representing the communication graph. In this paper, we use Chebyshev matrix polynomials to generate gossip matrices whose spectral properties result in faster convergence speeds, while allowing for a fully distributed implementation. As a result, the proposed algorithm requires fewer gradient updates at the cost of additional rounds of communications between agents. We illustrate the performance of the proposed algorithm in a distributed signal recovery problem. Our simulations show how the use of Chebyshev matrix polynomials can be used to improve the convergence speed of a primal-dual algorithm over communication networks, especially in networks with poor spectral properties, by trading local computation by communication rounds.
253 - Kui Zhu , Yutao Tang 2021
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of the local objective functions can not be accessed by the agents. To solve this problem, we propose a projected primal-dual dynamics using only the objective functions approximate subgradients. We first prove that the formulated optimization problem can only be solved with an approximate error depending upon the accuracy of the available subgradients. Then, we show the exact solvability of this optimization problem if the accumulated approximation error is not too large. After that, we also give a novel componentwise normalized variant to improve the transient behavior of the convergent sequence. The effectiveness of our algorithms is verified by a numerical example.
109 - Hao Luo 2021
We introduce a novel primal-dual flow for affine constrained convex optimization problem. As a modification of the standard saddle-point system, our primal-dual flow is proved to possesses the exponential decay property, in terms of a tailored Lyapunov function. Then a class of primal-dual methods for the original optimization problem are obtained from numerical discretizations of the continuous flow, and with a unified discrete Lyapunov function, nonergodic convergence rates are established. Among those algorithms, we can recover the (linearized) augmented Lagrangian method and the quadratic penalty method with continuation technique. Also, new methods with a special inner problem, that is a linear symmetric positive definite system or a nonlinear equation which may be solved efficiently via the semi-smooth Newton method, have been proposed as well. Especially, numerical tests on the linearly constrained $l_1$-$l_2$ minimization show that our method outperforms the accelerated linearized Bregman method.
Nonlinearly constrained nonconvex and nonsmooth optimization models play an increasingly important role in machine learning, statistics and data analytics. In this paper, based on the augmented Lagrangian function we introduce a flexible first-order primal-dual method, to be called nonconvex auxiliary problem principle of augmented Lagrangian (NAPP-AL), for solving a class of nonlinearly constrained nonconvex and nonsmooth optimization problems. We demonstrate that NAPP-AL converges to a stationary solution at the rate of o(1/sqrt{k}), where k is the number of iterations. Moreover, under an additional error bound condition (to be called VP-EB in the paper), we further show that the convergence rate is in fact linear. Finally, we show that the famous Kurdyka- Lojasiewicz property and the metric subregularity imply the afore-mentioned VP-EB condition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا