Do you want to publish a course? Click here

On the chiral anomaly and the Yang-Mills gradient flow

142   0   0.0 ( 0 )
 Added by Martin L\\\"uscher
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

There are currently two singularity-free universal expressions for the topological susceptibility in QCD, one based on the Yang-Mills gradient flow and the other on density-chain correlation functions. While the latter link the susceptibility to the anomalous chiral Ward identities, the gradient flow permits the emergence of the topological sectors in lattice QCD to be understood. Here the two expressions are shown to coincide in the continuum theory, for any number of quark flavours in the range where the theory is asymptotically free.



rate research

Read More

Using finite size scaling techniques and a renormalization scheme based on the Gradient Flow, we determine non-perturbatively the $beta$-function of the $SU(3)$ Yang-Mills theory for a range of renormalized couplings $bar g^2sim 1-12$. We perform a detailed study of the matching with the asymptotic NNLO perturbative behavior at high-energy, with our non-perturbative data showing a significant deviation from the perturbative prediction down to $bar{g}^2sim1$. We conclude that schemes based on the Gradient Flow are not competitive to match with the asymptotic perturbative behavior, even when the NNLO expansion of the $beta$-function is known. On the other hand, we show that matching non-perturbatively the Gradient Flow to the Schrodinger Functional scheme allows us to make safe contact with perturbation theory with full control on truncation errors. This strategy allows us to obtain a precise determination of the $Lambda$-parameter of the $SU(3)$ Yang-Mills theory in units of a reference hadronic scale ($sqrt{8t_0},Lambda_{overline{rm MS}} = 0.6227(98)$), showing that a precision on the QCD coupling below 0.5% per-cent can be achieved using these techniques.
In K.~Hieda, A.~Kasai, H.~Makino, and H.~Suzuki, Prog. Theor. Exp. Phys. textbf{2017}, 063B03 (2017), a properly normalized supercurrent in the four-dimensional (4D) $mathcal{N}=1$ super Yang--Mills theory (SYM) that works within on-mass-shell correlation functions of gauge-invariant operators is expressed in a regularization-independent manner by employing the gradient flow. In the present paper, this construction is extended to the supercurrent in the 4D $mathcal{N}=2$ SYM. The so-constructed supercurrent will be useful, for instance, for fine tuning of lattice parameters toward the supersymmetric continuum limit in future lattice simulations of the 4D $mathcal{N}=2$ SYM.
The spatial distribution of the stress tensor around the quark--anti-quark ($Qbar{Q}$) pair in SU(3) lattice gauge theory is studied. The Yang-Mills gradient flow plays a crucial role to make the stress tensor well-defined and derivable from the numerical simulations on the lattice. The resultant stress tensor with a decomposition into local principal axes shows, for the first time, the detailed structure of the flux tube along the longitudinal and transverse directions in a gauge invariant manner. The linear confining behavior of the $Qbar{Q}$ potential at long distances is derived directly from the integral of the local stress tensor.
Euclidean two-point correlators of the energy-momentum tensor (EMT) in SU(3) gauge theory on the lattice are studied on the basis of the Yang-Mills gradient flow. The entropy density and the specific heat obtained from the two-point correlators are shown to be in good agreement with those from the one-point functions of EMT. These results constitute a first step toward the first principle simulations of the transport coefficients with the gradient flow.
We study the spatial distribution of the stress tensor around static quark-anti-quark pair in SU(3) lattice gauge theory. In particular, we reveal the transverse structure of the stress tensor distribution in detail by taking the continuum limit. The Yang-Mills gradient flow plays a crucial role to make the stress tensor well-defined and derivable from the numerical simulations on the lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا