Do you want to publish a course? Click here

Remarks on the Bernstein inequality for higher order operators and related results

182   0   0.0 ( 0 )
 Added by Dong Li
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This note is devoted to several results about frequency localized functions and associated Bernstein inequalities for higher order operators. In particular, we construct some counterexamples for the frequency-localized Bernstein inequalities for higher order Laplacians. We show also that the heat semi-group associated to powers larger than one of the laplacian does not satisfy the strict maximum principle in general. Finally, in a suitable range we provide several positive results.



rate research

Read More

In this paper we explore the theory of fractional powers of non-negative (and not necessarily self-adjoint) operators and its amazing relationship with the Chebyshev polynomials of the second kind to obtain results of existence, regularity and behavior asymptotic of solutions for linear abstract evolution equations of $n$-th order in time, where $ngeqslant3$. We also prove generalizations of classical results on structural damping for linear systems of differential equations.
We consider a version of the fractional Sobolev inequality in domains and study whether the best constant in this inequality is attained. For the half-space and a large class of bounded domains we show that a minimizer exists, which is in contrast to the classical Sobolev inequalities in domains.
We consider nonnegative solutions $u:Omegalongrightarrow mathbb{R}$ of second order hypoelliptic equations begin{equation*} mathscr{L} u(x) =sum_{i,j=1}^n partial_{x_i} left(a_{ij}(x)partial_{x_j} u(x) right) + sum_{i=1}^n b_i(x) partial_{x_i} u(x) =0, end{equation*} where $Omega$ is a bounded open subset of $mathbb{R}^{n}$ and $x$ denotes the point of $Omega$. For any fixed $x_0 in Omega$, we prove a Harnack inequality of this type $$sup_K u le C_K u(x_0)qquad forall u mbox{ s.t. } mathscr{L} u=0, ugeq 0,$$ where $K$ is any compact subset of the interior of the $mathscr{L}$-propagation set of $x_0$ and the constant $C_K$ does not depend on $u$.
239 - Seick Kim , Soojung Kim , 2012
We consider second-order linear parabolic operators in non-divergence form that are intrinsically defined on Riemannian manifolds. In the elliptic case, Cabre proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional curvature of the underlying manifold is nonnegative. Later, Kim improved Cabres result by replacing the curvature condition by a certain condition on the distance function. Assuming essentially the same condition introduced by Kim, we establish Krylov-Safonov Harnack inequality for nonnegative solutions of the non-divergent parabolic equation. This, in particular, gives a new proof for Li-Yau Harnack inequality for positive solutions to the heat equation in a manifold with nonnegative Ricci curvature.
This paper establishes the local-in-time existence and uniqueness of strong solutions in $H^{s}$ for $s > n/2$ to the viscous, non-resistive magnetohydrodynamics (MHD) equations in $mathbb{R}^{n}$, $n=2, 3$, as well as for a related model where the advection terms are removed from the velocity equation. The uniform bounds required for proving existence are established by means of a new estimate, which is a partial generalisation of the commutator estimate of Kato & Ponce (Comm. Pure Appl. Math. 41(7), 891-907, 1988).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا