No Arabic abstract
Starting with a lattice with an action of $mathbb{Z}$ or $mathbb{R}$, we build a Helly graph or an injective metric space. We deduce that the $ell^infty$ orthoscheme complex of any bounded graded lattice is injective. We also prove a Cartan-Hadamard result for locally injective metric spaces. We apply this to show that any Garside group acts on an injective metric space and on a Helly graph. We also deduce that the natural piecewise $ell^infty$ metric on any Euclidean building of type $tilde{A_n}$ extended, $tilde{B_n}$, $tilde{C_n}$ or $tilde{D_n}$ is injective, and its thickening is a Helly graph. Concerning Artin groups of Euclidean types $tilde{A_n}$ and $tilde{C_n}$, we show that the natural piecewise $ell^infty$ metric on the Deligne complex is injective, the thickening is a Helly graph, and it admits a convex bicombing. This gives a metric proof of the $K(pi,1)$ conjecture, as well as several other consequences usually known when the Deligne complex has a CAT(0) metric.
We announce results on the structure of CAT(0) groups, CAT(0) lattices and of the underlying spaces. Our statements rely notably on a general study of the full isometry groups of proper CAT(0) spaces. Classical statements about Hadamard manifolds are established for singular spaces; new arithmeticity and rigidity statements are obtained.
We study global fixed points for actions of Coxeter groups on nonpositively curved singular spaces. In particular, we consider property FA_n, an analogue of Serres property FA for actions on CAT(0) complexes. Property FA_n has implications for irreducible representations and complex of groups decompositions. In this paper, we give a specific condition on Coxeter presentations that implies FA_n and show that this condition is in fact equivalent to FA_n for n=1 and 2. As part of the proof, we compute the Gersten-Stallings angles between special subgroups of Coxeter groups.
We show that the Dehn function of the handlebody group is exponential in any genus $ggeq 3$. On the other hand, we show that the handlebody group of genus $2$ is cubical, biautomatic, and therefore has a quadratic Dehn function.
In this article we introduce and study uniform and non-uniform approximate lattices in locally compact second countable (lcsc) groups. These are approximate subgroups (in the sense of Tao) which simultaneously generalize lattices in lcsc group and mathematical quasi-crystals (a.k.a. Meyer sets) in lcsc abelian groups. We show that envelopes of strong approximate lattices are unimodular, and that approximate lattices in nilpotent groups are uniform. We also establish several results relating properties of approximate lattices and their envelopes. For example, we prove a version of the Milnor-Schwarz lemma for uniform approximate lattices in compactly-generated lcsc groups, which we then use to relate metric amenability of uniform approximate lattices to amenability of the envelope. Finally we extend a theorem of Kleiner and Leeb to show that the isometry groups of higher rank symmetric spaces of non-compact type are QI rigid with respect to finitely-generated approximate groups.
We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim{a}r. In this paper we focus on properties of the Poincar{e} profiles of groups with polynomial growth, and of hyperbolic spaces, where we deduce a connection between these profiles and conformal dimension. As applications, we use these invariants to show the non-existence of coarse embeddings in a variety of examples.