Do you want to publish a course? Click here

A Quadratic Time Locally Optimal Algorithm for NP-hard Equal Cardinality Partition Optimization

268   0   0.0 ( 0 )
 Added by Kaan Gokcesu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the optimization version of the equal cardinality set partition problem (where the absolute difference between the equal sized partitions sums are minimized). While this problem is NP-hard and requires exponential complexity to solve in general, we have formulated a weaker version of this NP-hard problem, where the goal is to find a locally optimal solution. The local optimality considered in our work is under any swap between the opposing partitions element pairs. To this end, we designed an algorithm which can produce such a locally optimal solution in $O(N^2)$ time and $O(N)$ space. Our approach does not require positive or integer inputs and works equally well under arbitrary input precisions. Thus, it is widely applicable in different problem scenarios.



rate research

Read More

We study the optimization version of the set partition problem (where the difference between the partition sums are minimized), which has numerous applications in decision theory literature. While the set partitioning problem is NP-hard and requires exponential complexity to solve (i.e., intractable); we formulate a weaker version of this NP-hard problem, where the goal is to find a locally optimal solution. We show that our proposed algorithms can find a locally optimal solution in near linear time. Our algorithms require neither positive nor integer elements in the input set, hence, they are more widely applicable.
The Road Coloring Theorem states that every aperiodic directed graph with constant out-degree has a synchronized coloring. This theorem had been conjectured during many years as the Road Coloring Problem before being settled by A. Trahtman. Trahtmans proof leads to an algorithm that finds a synchronized labeling with a cubic worst-case time complexity. We show a variant of his construction with a worst-case complexity which is quadratic in time and linear in space. We also extend the Road Coloring Theorem to the periodic case.
We consider the problem of computing the maximum likelihood multivariate log-concave distribution for a set of points. Specifically, we present an algorithm which, given $n$ points in $mathbb{R}^d$ and an accuracy parameter $epsilon>0$, runs in time $poly(n,d,1/epsilon),$ and returns a log-concave distribution which, with high probability, has the property that the likelihood of the $n$ points under the returned distribution is at most an additive $epsilon$ less than the maximum likelihood that could be achieved via any log-concave distribution. This is the first computationally efficient (polynomial time) algorithm for this fundamental and practically important task. Our algorithm rests on a novel connection with exponential families: the maximum likelihood log-concave distribution belongs to a class of structured distributions which, while not an exponential family, locally possesses key properties of exponential families. This connection then allows the problem of computing the log-concave maximum likelihood distribution to be formulated as a convex optimization problem, and solved via an approximate first-order method. Efficiently approximating the (sub) gradients of the objective function of this optimization problem is quite delicate, and is the main technical challenge in this work.
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $frac{alpha}{1+alpha}-varepsilon$, where $alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $frac{1}{2}-varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of Buchbinder and Feldman (Math of OR 2019), that achieves the state-of-the-art offline approximation guarantee of $alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to Feldman et al. (NeurIPS 2018). It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(frac{log k + log (1/alpha)}{varepsilon^2})$ per element.
126 - Ankur Moitra , Michael Saks 2013
We give a polynomial time algorithm for the lossy population recovery problem. In this problem, the goal is to approximately learn an unknown distribution on binary strings of length $n$ from lossy samples: for some parameter $mu$ each coordinate of the sample is preserved with probability $mu$ and otherwise is replaced by a `?. The running time and number of samples needed for our algorithm is polynomial in $n$ and $1/varepsilon$ for each fixed $mu>0$. This improves on algorithm of Wigderson and Yehudayoff that runs in quasi-polynomial time for any $mu > 0$ and the polynomial time algorithm of Dvir et al which was shown to work for $mu gtrapprox 0.30$ by Batman et al. In fact, our algorithm also works in the more general framework of Batman et al. in which there is no a priori bound on the size of the support of the distribution. The algorithm we analyze is implicit in previous work; our main contribution is to analyze the algorithm by showing (via linear programming duality and connections to complex analysis) that a certain matrix associated with the problem has a robust local inverse even though its condition number is exponentially small. A corollary of our result is the first polynomial time algorithm for learning DNFs in the restriction access model of Dvir et al.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا