Do you want to publish a course? Click here

A compact six degree of freedom seismometer with interferometric readout

164   0   0.0 ( 0 )
 Added by Amit Ubhi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ground vibrations couple to the longitudinal and angular motion of the aLIGO test masses and limit the observatory sensitivity below 30,Hz. Novel inertial sensors have the potential to improve the aLIGO sensitivity in this band and simplify the lock acquisition of the detectors. In this paper, we experimentally study a compact 6D seismometer that consists of a mass suspended by a single wire. The position of the mass is interferometrically read out relative to the platform that supports the seismometer. We present the experimental results, discuss limitations of our metallic prototype, and show that a compact 6D seismometer made out of fused silica and suspended with a fused silica fibre has the potential to improve the aLIGO low frequency noise.



rate research

Read More

We describe a torsion pendulum with a large mass-quadrupole moment and a resonant frequency of 2.8 mHz, whose angle is measured using a modified Michelson interferometer. The system achieved noise levels of $sim200 text{prad}/sqrt{text{Hz}}$ between 0.2-30 Hz and $sim10 text{prad}/sqrt{text{Hz}}$ above 100 Hz. Such a system can be applied to a broad range of fields from the study of rotational seismic motion and elastogravity signals to gravitational wave observation and tests of gravity.
We present a modified commercial L-4C geophone with interferometric readout that demonstrated a resolution 60 times lower than the included coil-magnet readout at low frequencies. The intended application for the modified sensor is in vibration isolation platforms that require improved performance at frequencies lower than 1 Hz. A controls and noise-model of an Advanced LIGO HAM-ISI vibration isolation system was developed, and it shows that our sensor can reduce the residual vibration by a factor of 70 at 0.1 Hz
We constructed a gamma-ray detector by combining two types of scintillator array detectors with an MPPC array and evaluated the spectral performance by reading out the signals from the MPPC with a low-power integrated circuit (ASIC) manufactured by IDEAS in Norway. One of the two types of scintillators is a GAGG(Ce) (Ce-doped $ rm{Gd_3Al_2Ga_3O_{12}}$) scintillator, and the other is an LFS scintillator. The scintillator array is 2.5 cm $times$ 2.5 cm in size and is coated with $ rm{BaSO_4}$-based white paint for GAGG(Ce) and an enhanced specular reflector (ESR) for LFS except for the side optically coupled to the MPPC. The spectra derived from the array are affected by the MPPC photon saturations and light leakage from the adjacent pixels, and we carefully corrected for both effects in our data analysis. The energy resolution of 662 keV at 20 $^circ$C is 6.10$pm$0.04% for the GAGG(Ce) scintillator array and 8.57$pm$0.15% for the LFS scintillator array, this is equivalent to the typical energy resolution found in the references. The energy resolution depends on the temperature: the energy resolution improves as the temperature decreases. We found that the contribution of thermal noise from the MPPCs to the energy resolution is negligible within the range of --20 to 40 $^circ$C, and the energy resolution is mainly determined by the light yield of the crystals.
The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5~GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the $e/pi$ separation capability and the response of the photosensors to direct ionization.
An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$;$sr and that the detection efficiency and angular resolution for 662$;$keV gamma rays from the center of the FoV is $(9.31 pm 0.95) times 10^{^-5}$ and $5.9^{circ} pm 0.6^{circ}$, respectively. Furthermore, the ETCC can detect 0.15$;murm{Sv/h}$ from a $^{137}$Cs gamma-ray source with a significance of 5$sigma$ in 13 min in the laboratory. In this paper, we report the specifications of the ETCC and the results of the performance tests. Furthermore, we discuss its potential use for environmental gamma-ray measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا