Do you want to publish a course? Click here

Ultrafast spin-orbit reciprocal conversions of tightly focused hybridly polarized light pulses

175   0   0.0 ( 0 )
 Added by Yanxiang Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

103 - Jian Chen , Lihua Yu , Chenhao Wan 2021
Spin-orbital coupling and interaction as intrinsic light fields characteristics have been extensively studied. Previous studies involve the spin angular momentum (SAM) carried by circular polarization and orbital angular momentum (OAM) associated with a spiral phase wavefront within the beam cross section, where both the SAM and OAM are in parallel with the propagation direction. In this work, we study a new type of spin-orbital coupling between the longitudinal SAM and the transverse OAM carried by a spatiotemporal optical vortex (STOV) wavepacket under tight focusing condition. Intricate spatiotemporal phase singularity structures are formed when a circularly polarized STOV wavepacket is tightly focused by a high numerical aperture objective lens. For the transversely polarized components, phase singularity orientation can be significantly tilted away from the transverse direction towards the optical axis due to the coupling between longitudinal SAM and transverse OAM. The connection between the amount of rotation and the temporal width of the wavepacket is revealed. More interestingly, spatiotemporal phase singularity structure with a continuous evolution from longitudinal to transverse orientation through the wavepacket is observed for the longitudinally polarized component. These exotic spin-orbit coupling phenomena are expected to render new effects and functions when they are exploited in light matter interactions.
Recently, it was shown that vector beams can be utilized for fast kinematic sensing via measurements of their global polarization state [Optica 2(10), 864 (2015)]. The method relies on correlations between the spatial and polarization degrees of freedom of the illuminating field which result from its nonseparable mode structure. Here, we extend the method to the nonparaxial regime. We study experimentally and theoretically the far-field polarization state generated by the scattering of a dielectric microsphere in a tightly focused vector beam as a function of the particle position. Using polarization measurements only, we demonstrate position sensing of a Mie particle in three dimensions. Our work extends the concept of back focal plane interferometry and highlights the potential of polarization analysis in optical tweezers employing structured light.
The edge diffraction of a homogeneously polarized light beam is studied theoretically based on the paraxial optics and Fresnel-Kirchhoff approximation, and the dependence of the diffracted beam pattern of the incident beam polarization is predicted. If the incident beam is circularly polarized, the trajectory of the diffracted beam centre of gravity experiences a small angular deviation from the geometrically expected direction. The deviation is parallel to the screen edge and reverses the sign with the polarization handedness; it is explicitly calculated for the case of a Gaussian incident beam with plane wavefront. This effect is a manifestation of the spin-orbit interaction of light and can be interpreted as a revelation of the internal spin energy flow immanent in circularly polarized beams. It also exposes the vortex character of the weak longitudinal field component associated with the circularly polarized incident beam.
We report experiments on the generation of third and fifth harmonics of millijoule-level, tightly focused, femtosecond laser pulses at 2.2 {mu}m wavelength in air. The measured ratio of yields of the third and fifth harmonics in our setup is about 2 cdot 10-4. This result contradicts the recent suggestion that the Kerr effect in air saturates and changes sign in ultra-intense optical fields.
Investigation of laser matter interaction with electromagnetic codes requires to implement sources for the electromagnetic fields. A way to do so is to prescribe the fields at the numerical box boundaries in order to achieve the desired fields inside the numerical box. Here we show that the often used paraxial approximation can lead to unexpected field profiles with strong impact on the laser matter interaction results. We propose an efficient numerical algorithm to compute the required laser boundary conditions consistent with the Maxwells equations for arbitrarily shaped, tightly focused laser pulses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا