No Arabic abstract
Accurate downlink channel information is crucial to the beamforming design, but it is difficult to obtain in practice. This paper investigates a deep learning-based optimization approach of the downlink beamforming to maximize the system sum rate, when only the uplink channel information is available. Our main contribution is to propose a model-driven learning technique that exploits the structure of the optimal downlink beamforming to design an effective hybrid learning strategy with the aim to maximize the sum rate performance. This is achieved by jointly considering the learning performance of the downlink channel, the power and the sum rate in the training stage. The proposed approach applies to generic cases in which the uplink channel information is available, but its relation to the downlink channel is unknown and does not require an explicit downlink channel estimation. We further extend the developed technique to massive multiple-input multiple-output scenarios and achieve a distributed learning strategy for multicell systems without an inter-cell signalling overhead. Simulation results verify that our proposed method provides the performance close to the state of the art numerical algorithms with perfect downlink channel information and significantly outperforms existing data-driven methods in terms of the sum rate.
In this paper, we study Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) radios for simultaneous data communication and control information exchange. Capitalizing on a recently proposed FD MIMO architecture combining digital transmit and receive beamforming with reduced complexity multi-tap analog Self-Interference (SI) cancellation, we propose a novel transmission scheme exploiting channel reciprocity for joint downlink beamformed information data communication and uplink channel estimation through training data transmission. We adopt a general model for pilot-assisted channel estimation and present a unified optimization framework for all involved FD MIMO design parameters. Our representative Monte Carlo simulation results for an example algorithmic solution for the beamformers as well as for the analog and digital SI cancellation demonstrate that the proposed FD-based joint communication and control scheme provides 1.4x the downlink rate of its half duplex counterpart. This performance improvement is achieved with 50% reduction in the hardware complexity for the analog canceller than conventional FD MIMO architectures with fully connected analog cancellation.
Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (DAC) for each antenna and radio frequency (RF) chain in downlink transmission is used, which brings challenges for precoding design. To circumvent these obstacles, we develop a model-driven deep learning (DL) network for massive MU-MIMO with finite-alphabet precoding in this article. The architecture of the network is specially designed by unfolding an iterative algorithm. Compared with the traditional state-of-the-art techniques, the proposed DL-based precoder shows significant advantages in performance, complexity, and robustness to channel estimation error under Rayleigh fading channel.
In this paper, we consider user selection and downlink precoding for an over-loaded single-cell massive multiple-input multiple-output (MIMO) system in frequency division duplexing (FDD) mode, where the base station is equipped with a dual-polarized uniform planar array (DP-UPA) and serves a large number of single-antenna users. Due to the absence of uplink-downlink channel reciprocity and the high-dimensionality of channel matrices, it is extremely challenging to design downlink precoders using closed-loop channel probing and feedback with limited spectrum resource. To address these issues, a novel methodology -- active channel sparsification (ACS) -- has been proposed recently in the literature for uniform linear array (ULA) to design sparsifying precoders, which boosts spectral efficiency for multi-user downlink transmission with substantially reduced channel feedback overhead. Pushing forward this line of research, we aim to facilitate the potential deployment of ACS in practical FDD massive MIMO systems, by extending it from ULA to DP-UPA with explicit user selection and making the current ACS implementation simplified. To this end, by leveraging Toeplitz structure of channel covariance matrices, we extend the original ACS using scale-weight bipartite graph representation to the matrix-weight counterpart. Building upon this, we propose a multi-dimensional ACS (MD-ACS) method, which is a generalization of original ACS formulation and is more suitable for DP-UPA antenna configurations. The nonlinear integer program formulation of MD-ACS can be classified as a generalized multi-assignment problem (GMAP), for which we propose a simple yet efficient greedy algorithm to solve it. Simulation results demonstrate the performance improvement of the proposed MD-ACS with greedy algorithm over the state-of-the-art methods based on the QuaDRiGa channel models.
Massive multiple-input multiple-output is a very important technology for future fifth-generation systems. However, massive massive multiple input multiple output systems are still limited because of pilot contamination, impacting the data rate due to the non-orthogonality of pilot sequences transmitted by users in the same cell to the neighboring cells. We propose a channel estimation with complete knowledge of large-scale fading by using an orthogonal pilot reuse sequence to eliminate PC in edge users with poor channel quality based on the estimation of large-scale fading and performance analysis of maximum ratio transmission and zero forcing precoding methods. We derived the lower bounds on the achievable downlink DR and signal-to-interference noise ratio based on assigning PRS to a user grouping that mitigated this problem when the number of antenna elements approaches infinity The simulation results showed that a high DR can be achieved due to better channel estimation and reduced performance loss
We investigate the joint uplink-downlink design for time-division-duplexing (TDD) and frequency-division-duplexing (FDD) multi-user systems aided by an intelligent reflecting surface (IRS). We formulate and solve a multi-objective optimization problem to maximize uplink and downlink rates as a weighted-sum problem (WSP) that captures the trade-off between achievable uplink and downlink rates. We propose a resource allocation design that optimizes the WSP by jointly optimizing the beamforming vectors, power control and IRS phase shifts where the same IRS configuration is used for assisting uplink and downlink transmissions. In TDD, the proposed IRS design reduces the overhead associated with IRS configuration and the need for quiet periods while updating the IRS. In addition, a joint IRS design is critical for supporting concurrent uplink and downlink transmissions in FDD. We investigate the effect of different user-weighting strategies and different parameters on the performance of the joint IRS design and the resultant uplink-downlink trade-off regions. In all FDD scenarios and some TDD scenarios, the joint design significantly outperforms the heuristic of using the IRS configuration optimized for uplink (respectively, downlink) to assist the downlink (respectively, uplink) transmissions and substantially bridges the gap to the upper bound of allowing different IRS configurations in uplink and downlink.