Stochastic emulation of quantum algorithms


Abstract in English

Quantum algorithms profit from the interference of quantum states in an exponentially large Hilbert space and the fact that unitary transformations on that Hilbert space can be broken down to universal gates that act only on one or two qubits at the same time. The former aspect renders the direct classical simulation of quantum algorithms difficult. Here we introduce higher-order partial derivatives of a probability distribution of particle positions as a new object that shares these basic properties of quantum mechanical states needed for a quantum algorithm. Discretization of the positions allows one to represent the quantum mechanical state of $n_text{bit}$ qubits by $2(n_text{bit}+1)$ classical stochastic bits. Based on this, we demonstrate many-particle interference and representation of pure entangled quantum states via derivatives of probability distributions and find the universal set of stochastic maps that correspond to the quantum gates in a universal gate set. We prove that the propagation via the stochastic map built from those universal stochastic maps reproduces up to a prefactor exactly the evolution of the quantum mechanical state with the corresponding quantum algorithm, leading to an automated translation of a quantum algorithm to a stochastic classical algorithm. We implement several well-known quantum algorithms, analyse the scaling of the needed number of realizations with the number of qubits, and highlight the role of destructive interference for the cost of the emulation. Foundational questions raised by the new representation of a quantum state are discussed.

Download