No Arabic abstract
Future wireless access networks will support simultaneously a large number of devices with heterogeneous service requirements. These include data rates, error rates, and latencies. While there exist achievable rate and capacity results for Gaussian broadcast channels in the asymptotic regime, the characterization of second-order achievable rate regions for different blocklength constraints are not available. Therefore, we investigate a two-user Gaussian broadcast channel (GBC) with heterogeneous blocklength constraints under a maximal input power constraint and an average error probability constraint. Unlike the traditional GBC where two users have the same blocklength constraints, here the user with higher output SNR has a shorter blocklength constraint. We show that with sufficiently large output SNR, the stronger user can invoke the technique named early decoding (ED) to decode the interference. Then the successive interference cancellation (SIC) can proceed. This leads to an improved achievable rate region compared to the state of the art. To achieve it, we derive an explicit lower bound on the necessary number of received symbols for a successful ED, using an independent and identically distributed Gaussian input. A second-order rate of the weaker user who suffers from an SNR change due to the heterogeneous blocklength constraint, is also derived. We then formulate the rate region of the considered setting with individual and also sum power constraints and compare to that of the hybrid non-orthogonal multiple access (HNOMA) scheme. Numerical results show that ED has a larger rate region than HNOMA partly when the gain of the better channel is sufficiently larger than the weaker one. Under the considered setting, about 7-dB SNR gain can be achieved. This makes ED with SIC a promising technique for future wireless network.
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.
In this paper, we investigate upper and lower bounds on the capacity of two-user fading broadcast channels where one of the users has a constant (non-fading) channel. We use the Costa entropy power inequality (EPI) along with an optimization framework to derive upper bounds on the sum-capacity and superposition coding to obtain lower bounds on the sum-rate for this channel. For this fading broadcast channel where one channel is constant, we find that the upper and lower bounds meet under special cases, and in general, we show that the achievable sum-rate comes within a constant of the outer bound.
This work concerns the behavior of good (capacity achieving) codes in several multi-user settings in the Gaussian regime, in terms of their minimum mean-square error (MMSE) behavior. The settings investigated in this context include the Gaussian wiretap channel, the Gaussian broadcast channel (BC) and the Gaussian BC with confidential messages (BCC). In particular this work addresses the effects of transmitting such codes on unintended receivers, that is, receivers that neither require reliable decoding of the transmitted messages nor are they eavesdroppers that must be kept ignorant, to some extent, of the transmitted message. This work also examines the effect on the capacity region that occurs when we limit the allowed disturbance in terms of MMSE on some unintended receiver. This trade-off between the capacity region and the disturbance constraint is given explicitly for the Gaussian BC and the secrecy capacity region of the Gaussian BCC.
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcast constraints. The polarization-based codes achieve rates on the boundary of the private-message capacity region. For two-user noisy broadcast channels, polar implementations are presented for two information-theoretic schemes: i) Covers superposition codes; ii) Martons codes. Due to the structure of polarization, constraints on the auxiliary and channel-input distributions are identified to ensure proper alignment of polarization indices in the multi-user setting. The codes achieve rates on the capacity boundary of a few classes of broadcast channels (e.g., binary-input stochastically degraded). The complexity of encoding and decoding is $O(n*log n)$ where $n$ is the block length. In addition, polar code sequences obtain a stretched-exponential decay of $O(2^{-n^{beta}})$ of the average block error probability where $0 < beta < 0.5$.
A broadcast channel (BC) where the decoders cooperate via a one-sided link is considered. One common and two private messages are transmitted and the private message to the cooperative user should be kept secret from the cooperation-aided user. The secrecy level is measured in terms of strong secrecy, i.e., a vanishing information leakage. An inner bound on the capacity region is derived by using a channel-resolvability-based code that double-bins the codebook of the secret message, and by using a likelihood encoder to choose the transmitted codeword. The inner bound is shown to be tight for semi-deterministic and physically degraded BCs and the results are compared to those of the corresponding BCs without a secrecy constraint. Blackwell and Gaussian BC examples illustrate the impact of secrecy on the rate regions. Unlike the case without secrecy, where sharing information about both private messages via the cooperative link is optimal, our protocol conveys parts of the common and non-confidential messages only. This restriction reduces the transmission rates more than the usual rate loss due to secrecy requirements. An example that illustrates this loss is provided.