Do you want to publish a course? Click here

Sparse optimal stochastic control

153   0   0.0 ( 0 )
 Added by Kaito Ito
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in general, the value function is not differentiable in the domain. Then, we characterize the value function as a viscosity solution to the associated Hamilton-Jacobi-Bellman (HJB) equation. Based on the result, we derive a necessary and sufficient condition for the $L^0$ optimality, which immediately gives the optimal feedback map. Especially for control-affine systems, we consider the relationship with $L^1$ optimal control problem and show an equivalence theorem.



rate research

Read More

170 - Feiran Zhao , Keyou You 2020
Optimal control of a stochastic dynamical system usually requires a good dynamical model with probability distributions, which is difficult to obtain due to limited measurements and/or complicated dynamics. To solve it, this work proposes a data-driven distributionally robust control framework with the Wasserstein metric via a constrained two-player zero-sum Markov game, where the adversarial player selects the probability distribution from a Wasserstein ball centered at an empirical distribution. Then, the game is approached by its penalized version, an optimal stabilizing solution of which is derived explicitly in a linear structure under the Riccati-type iterations. Moreover, we design a model-free Q-learning algorithm with global convergence to learn the optimal controller. Finally, we verify the effectiveness of the proposed learning algorithm and demonstrate its robustness to the probability distribution errors via numerical examples.
In this effort, a novel operator theoretic framework is developed for data-driven solution of optimal control problems. The developed methods focus on the use of trajectories (i.e., time-series) as the fundamental unit of data for the resolution of optimal control problems in dynamical systems. Trajectory information in the dynamical systems is embedded in a reproducing kernel Hilbert space (RKHS) through what are called occupation kernels. The occupation kernels are tied to the dynamics of the system through the densely defined Liouville operator. The pairing of Liouville operators and occupation kernels allows for lifting of nonlinear finite-dimensional optimal control problems into the space of infinite-dimensional linear programs over RKHSs.
205 - Yutao Tang 2020
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distributed optimization problem. To solve this problem, we first augment each agent with an optimal signal generator to reproduce the global optimal point of the given distributed optimization problem, and then complete the global optimal consensus design by developing some adaptive tracking controllers for these augmented agents. Moreover, we present an extension when only real-time gradients are available. The trajectories of all agents in both cases are shown to be well-defined and achieve the expected consensus on the optimal point. Two numerical examples are given to verify the efficacy of our algorithms.
We propose a reachability approach for infinite and finite horizon multi-objective optimization problems for low-thrust spacecraft trajectory design. The main advantage of the proposed method is that the Pareto front can be efficiently constructed from the zero level set of the solution to a Hamilton-Jacobi-Bellman equation. We demonstrate the proposed method by applying it to a low-thrust spacecraft trajectory design problem. By deriving the analytic expression for the Hamiltonian and the optimal control policy, we are able to efficiently compute the backward reachable set and reconstruct the optimal trajectories. Furthermore, we show that any reconstructed trajectory will be guaranteed to be weakly Pareto optimal. The proposed method can be used as a benchmark for future research of applying reachability analysis to low-thrust spacecraft trajectory design.
199 - Xin Chen , Jorge I. Poveda , Na Li 2021
In power distribution systems, the growing penetration of renewable energy resources brings new challenges to maintaining voltage safety, which is further complicated by the limited model information of distribution systems. To address these challenges, we develop a model-free optimal voltage control algorithm based on projected primal-dual gradient dynamics and continuous-time zeroth-order method (extreme seeking control). This proposed algorithm i) operates purely based on voltage measurements and does not require any other model information, ii) can drive the voltage magnitudes back to the acceptable range, iii) satisfies the power capacity constraints all the time, iv) minimizes the total operating cost, and v) is implemented in a decentralized fashion where the privacy of controllable devices is preserved and plug-and-play operation is enabled. We prove that the proposed algorithm is semi-globally practically asymptotically stable and is structurally robust to measurement noises. Lastly, the performance of the proposed algorithm is further demonstrated via numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا