Do you want to publish a course? Click here

Exploiting Activation based Gradient Output Sparsity to Accelerate Backpropagation in CNNs

99   0   0.0 ( 0 )
 Added by Anup Sarma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Machine/deep-learning (ML/DL) based techniques are emerging as a driving force behind many cutting-edge technologies, achieving high accuracy on computer vision workloads such as image classification and object detection. However, training these models involving large parameters is both time-consuming and energy-hogging. In this regard, several prior works have advocated for sparsity to speed up the of DL training and more so, the inference phase. This work begins with the observation that during training, sparsity in the forward and backward passes are correlated. In that context, we investigate two types of sparsity (input and output type) inherent in gradient descent-based optimization algorithms and propose a hardware micro-architecture to leverage the same. Our experimental results use five state-of-the-art CNN models on the Imagenet dataset, and show back propagation speedups in the range of 1.69$times$ to 5.43$times$, compared to the dense baseline execution. By exploiting sparsity in both the forward and backward passes, speedup improvements range from 1.68$times$ to 3.30$times$ over the sparsity-agnostic baseline execution. Our work also achieves significant reduction in training iteration time over several previously proposed dense as well as sparse accelerator based platforms, in addition to achieving order of magnitude energy efficiency improvements over GPU based execution.



rate research

Read More

Automatic tumor segmentation is a crucial step in medical image analysis for computer-aided diagnosis. Although the existing methods based on convolutional neural networks (CNNs) have achieved the state-of-the-art performance, many challenges still remain in medical tumor segmentation. This is because regular CNNs can only exploit translation invariance, ignoring further inherent symmetries existing in medical images such as rotations and reflections. To mitigate this shortcoming, we propose a novel group equivariant segmentation framework by encoding those inherent symmetries for learning more precise representations. First, kernel-based equivariant operations are devised on every orientation, which can effectively address the gaps of learning symmetries in existing approaches. Then, to keep segmentation networks globally equivariant, we design distinctive group layers with layerwise symmetry constraints. By exploiting further symmetries, novel segmentation CNNs can dramatically reduce the sample complexity and the redundancy of filters (by roughly 2/3) over regular CNNs. More importantly, based on our novel framework, we show that a newly built GER-UNet outperforms its regular CNN-based counterpart and the state-of-the-art segmentation methods on real-world clinical data. Specifically, the group layers of our segmentation framework can be seamlessly integrated into any popular CNN-based segmentation architectures.
Meta learning methods have found success when applied to few shot classification problems, in which they quickly adapt to a small number of labeled examples. Prototypical representations, each representing a particular class, have been of particular importance in this setting, as they provide a compact form to convey information learned from the labeled examples. However, these prototypes are just one method of representing this information, and they are narrow in their scope and ability to classify unseen examples. We propose the implementation of contextualizers, which are generalizable prototypes that adapt to given examples and play a larger role in classification for gradient-based models. We demonstrate how to equip meta learning methods with contextualizers and show that their use can significantly boost performance on a range of few shot learning datasets. We also present figures of merit demonstrating the potential benefits of contextualizers, along with analysis of how models make use of them. Our approach is particularly apt for low-data environments where it is difficult to update parameters without overfitting. Our implementation and instructions to reproduce the experiments are available at https://github.com/naveace/proto-context.
A number of backpropagation-based approaches such as DeConvNets, vanilla Gradient Visualization and Guided Backpropagation have been proposed to better understand individual decisions of deep convolutional neural networks. The saliency maps produced by them are proven to be non-discriminative. Recently, the Layer-wise Relevance Propagation (LRP) approach was proposed to explain the classification decisions of rectifier neural networks. In this work, we evaluate the discriminativeness of the generated explanations and analyze the theoretical foundation of LRP, i.e. Deep Taylor Decomposition. The experiments and analysis conclude that the explanations generated by LRP are not class-discriminative. Based on LRP, we propose Contrastive Layer-wise Relevance Propagation (CLRP), which is capable of producing instance-specific, class-discriminative, pixel-wise explanations. In the experiments, we use the CLRP to explain the decisions and understand the difference between neurons in individual classification decisions. We also evaluate the explanations quantitatively with a Pointing Game and an ablation study. Both qualitative and quantitative evaluations show that the CLRP generates better explanations than the LRP. The code is available.
129 - Tianyu Pang , Kun Xu , Jun Zhu 2019
It has been widely recognized that adversarial examples can be easily crafted to fool deep networks, which mainly root from the locally non-linear behavior nearby input examples. Applying mixup in training provides an effective mechanism to improve generalization performance and model robustness against adversarial perturbations, which introduces the globally linear behavior in-between training examples. However, in previous work, the mixup-trained models only passively defend adversarial attacks in inference by directly classifying the inputs, where the induced global linearity is not well exploited. Namely, since the locality of the adversarial perturbations, it would be more efficient to actively break the locality via the globality of the model predictions. Inspired by simple geometric intuition, we develop an inference principle, named mixup inference (MI), for mixup-trained models. MI mixups the input with other random clean samples, which can shrink and transfer the equivalent perturbation if the input is adversarial. Our experiments on CIFAR-10 and CIFAR-100 demonstrate that MI can further improve the adversarial robustness for the models trained by mixup and its variants.
Convolutional neural networks often generate multiple logits and use simple techniques like addition or averaging for loss computation. But this allows gradients to be distributed equally among all paths. The proposed approach guides the gradients of backpropagation along weakest concept representations. A weakness scores defines the class specific performance of individual pathways which is then used to create a logit that would guide gradients along the weakest pathways. The proposed approach has been shown to perform better than traditional column merging techniques and can be used in several application scenarios. Not only can the proposed model be used as an efficient technique for training multiple instances of a model parallely, but also CNNs with multiple output branches have been shown to perform better with the proposed upgrade. Various experiments establish the flexibility of the learning technique which is simple yet effective in various multi-objective scenarios both empirically and statistically.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا