Sets of Special Subvarieties of Bounded Degree


Abstract in English

Let $f : X to S$ be a family of smooth projective algebraic varieties over a smooth connected quasi-projective base $S$, and let $mathbb{V} = R^{2k} f_{*} mathbb{Z}(k)$ be the integral variation of Hodge structure coming from degree $2k$ cohomology it induces. Associated to $mathbb{V}$ one has the so-called Hodge locus $textrm{HL}(S) subset S$, which is a countable union of special algebraic subvarieties of $S$ parametrizing those fibres of $mathbb{V}$ possessing extra Hodge tensors (and so conjecturally, those fibres of $f$ possessing extra algebraic cycles). The special subvarieties belong to a larger class of so-called weakly special subvarieties, which are subvarieties of $S$ maximal for their algebraic monodromy groups. For each positive integer $d$, we give an algorithm to compute the set of all weakly special subvarieties $Z subset S$ of degree at most $d$ (with the degree taken relative to a choice of projective compactification $S subset overline{S}$ and very ample line bundle $mathcal{L}$ on $overline{S}$). As a corollary of our algorithm we prove conjectures of Daw-Ren and Daw-Javanpeykar-Kuhne on the finiteness of sets of special and weakly special subvarieties of bounded degree.

Download