Regularized Stokeslets lines suitable for slender bodies in viscous flow


Abstract in English

Slender-body approximations have been successfully used to explain many phenomena in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity solutions to represent the flow. These singularities can be difficult to implement numerically because they diverge at their origin. Hence people have regularized these singularities to overcome this issue. This regularization blurs the force over a small blob therefore removing the divergent behaviour. However it is unclear how best to regularize the singularities to minimize errors. In this paper we investigate if a line of regularized Stokeslets can describe the flow around a slender body. This is achieved by comparing the asymptotic behaviour of the flow from the line of regularized Stokeslets with the results from slender-body theory. We find that the flow far from the body can be captured if the regularization parameter is proportional to the radius of the slender body. This is consistent with what is assumed in numerical simulations and provides a choice for the proportionality constant. However more stringent requirements must be placed on the regularization blob to capture the near field flow outside a slender body. This inability to replicate the local behaviour indicates that many regularizations cannot satisfy the non-slip boundary conditions on the bodies surface to leading order, with one of the most commonly used regularizations showing an angular dependency of velocity along any cross section. This problem can be overcome with compactly supported blobs { and we construct one such example blob which could be effectively used to simulate the flow around a slender body

Download