Do you want to publish a course? Click here

Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom

243   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Dynamic languages like Erlang, Clojure, JavaScript, and E adopted data-race freedom by design. To enforce data-race freedom, these languages either deep copy objects during actor (thread) communication or proxy back to their owning thread. We present Dala, a simple programming model that ensures data-race freedom while supporting efficient inter-thread communication. Dala is a dynamic, concurrent, capability-based language that relies on three core capabilities: immutable values can be shared freely; isolated mutable objects can be transferred between threads but not aliased; local objects can be aliased within their owning thread but not dereferenced by other threads. Objects with capabilities can co-exist with unsafe objects, that are unchecked and may suffer data races, without compromising the safety of safe objects. We present a formal model of Dala, prove data race-freedom and state and prove a dynamic gradual guarantee. These theorems guarantee data race-freedom when using safe capabilities and show that the addition of capabilities is semantics preserving modulo permission and cast errors.



rate research

Read More

147 - Azer Bestavros 2011
We define a domain-specific language (DSL) to inductively assemble flow networks from small networks or modules to produce arbitrarily large ones, with interchangeable functionally-equivalent parts. Our small networks or modules are small only as the building blocks in this inductive definition (there is no limit on their size). Associated with our DSL is a type theory, a system of formal annotations to express desirable properties of flow networks together with rules that enforce them as invariants across their interfaces, i.e, the rules guarantee the properties are preserved as we build larger networks from smaller ones. A prerequisite for a type theory is a formal semantics, i.e, a rigorous definition of the entities that qualify as feasible flows through the networks, possibly restricted to satisfy additional efficiency or safety requirements. This can be carried out in one of two ways, as a denotational semantics or as an operational (or reduction) semantics; we choose the first in preference to the second, partly to avoid exponential-growth rewriting in the operational approach. We set up a typing system and prove its soundness for our DSL.
In the era of Exascale computing, writing efficient parallel programs is indispensable and at the same time, writing sound parallel programs is very difficult. Specifying parallelism with frameworks such as OpenMP is relatively easy, but data races in these programs are an important source of bugs. In this paper, we propose LLOV, a fast, lightweight, language agnostic, and static data race checker for OpenMP programs based on the LLVM compiler framework. We compare LLOV with other state-of-the-art data race checkers on a variety of well-established benchmarks. We show that the precision, accuracy, and the F1 score of LLOV is comparable to other checkers while being orders of magnitude faster. To the best of our knowledge, LLOV is the only tool among the state-of-the-art data race checkers that can verify a C/C++ or FORTRAN program to be data race free.
Deadlocks occur in concurrent programs as a consequence of cyclic resource acquisition between threads. In this paper we present a novel type system that guarantees deadlock freedom for a language with references, unstructured locking primitives, and locks which are implicitly associated with references. The proposed type system does not impose a strict lock acquisition order and thus increases programming language expressiveness.
This work is devoted to the study of the problem of user-level capture and restoration of running computations in heterogeneous environments. Support for those operations has traditionally been offered through ready-made solutions for specific applications, which are difficult to tailor or adapt to different needs. We believe that a more promising approach would be to build specific solutions as needed, over a more general framework for capture and restoration. In this work, in order to explore the basic mechanisms a language should provide to support the implementation of different policies, we extend the Lua programming language with an API that allows the programmer to reify the internal structures of execution into fine-grained language values.
A challenge for programming language research is to design and implement multi-threaded low-level languages providing static guarantees for memory safety and freedom from data races. Towards this goal, we present a concurrent language employing safe region-based memory management and hierarchical locking of regions. Both regions and locks are treated uniformly, and the language supports ownership transfer, early deallocation of regions and early release of locks in a safe manner.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا