Do you want to publish a course? Click here

A Statistical Detection of Wide Binary Systems in the Ultra-Faint Dwarf Galaxy Reticulum II

262   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Binary stars can inflate the observed velocity dispersion of stars in dark matter dominated systems such as ultra-faint dwarf galaxies (UFDs). However, the population of binaries in UFDs is poorly constrained by observations, with preferred binary fractions for individual galaxies ranging from a few percent to nearly unity. Searching for wide binaries through nearest neighbor (NN) statistics (or the two-point correlation function) has been suggested in the literature, and we apply this method for the first time to detect wide binaries in a UFD. By analyzing the positions of stars in Reticulum~II (Ret~II) from Hubble Space Telescope images, we search for angularly resolved wide binaries in Ret~II. We find that the distribution of their NN distances shows an enhancement at projected separations of $lesssim8$ arc seconds relative to a model containing no binaries. We show that such an enhancement can be explained by a binary fraction of $f_bapprox0.07^{+0.04}_{-0.03}$, with modest evidence for a smaller mean separation than is seen in the solar neighborhood. We also use the observed magnitude distribution of stars in Ret~II to constrain the initial mass function over the mass range $0.34-0.78~M_{odot}$, finding that a shallow power-law slope of $alpha = 1.10^{+0.30}_{-0.09}$ matches the data.



rate research

Read More

We present Magellan/M2FS, VLT/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of 62.8 +/- 0.5 km/s and a velocity dispersion of 3.3 +/- 0.7 km/s. The mass-to-light ratio of Ret II within its half-light radius is 470 +/- 210 Msun/Lsun, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 km/s, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 +/- 0.09 dex, and we identify several extremely metal-poor stars with [Fe/H] < -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of [Fe/H] = -2.65 +/- 0.07, Ret II matches Segue~1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is log J = 18.8 +/- 0.6 Gev^2/cm^5 within 0.2 degrees, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.
219 - Evan N. Kirby 2015
Laevens et al. recently discovered Triangulum II, a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 L_sun. Using Keck/DEIMOS, we measured the radial velocities of six member stars within 1.2 of the center of Triangulum II, and we found a velocity dispersion of sigma_v = 5.1 -1.4 +4.0 km/s. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Triangulum II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center (v_GSR = -262 km/s). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption in our data set. The ellipticity is low, and the mean velocity, <v_helio> = -382.1 +/- 2.9 km/s, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey (PAndAS) stellar stream. If Triangulum II is in dynamical equilibrium, then it would have a mass-to-light ratio of 3600 -2100 +3500 M_sun/L_sun, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3-D half-light radius would be 4.8 -3.5 +8.1 M_sun/pc^3, even higher than Segue 1. Hence, Triangulum II is an excellent candidate for the indirect detection of dark matter annihilation.
105 - Ian U. Roederer 2016
The ultra-faint dwarf galaxy Reticulum 2 (Ret 2) was recently discovered in images obtained by the Dark Energy Survey. We have observed the four brightest red giants in Ret 2 at high spectral resolution using the Michigan/Magellan Fiber System. We present detailed abundances for as many as 20 elements per star, including 12 elements heavier than the Fe group. We confirm previous detection of high levels of r-process material in Ret 2 (mean [Eu/Fe]=+1.69+/-0.05) found in three of these stars (mean [Fe/H]=-2.88+/-0.10). The abundances closely match the r-process pattern found in the well-studied metal-poor halo star CS22892-052. Such r-process-enhanced stars have not been found in any other ultra-faint dwarf galaxy, though their existence has been predicted by at least one model. The fourth star in Ret 2 ([Fe/H]=-3.42+/-0.20) contains only trace amounts of Sr ([Sr/Fe]=-1.73+/-0.43) and no detectable heavier elements. One r-process enhanced star is also enhanced in C (natal [C/Fe]=+1.1). This is only the third such star known, which suggests that the nucleosynthesis sites leading to C and r-process enhancements are decoupled. The r-process-deficient star is enhanced in Mg ([Mg/Fe]=+0.81+/-0.14), and the other three stars show normal levels of alpha-enhancement (mean [Mg/Fe]=+0.34+/-0.03). The abundances of other alpha and Fe-group elements closely resemble those in ultra-faint dwarf galaxies and metal-poor halo stars, suggesting that the nucleosynthesis that led to the large r-process enhancements either produced no light elements or produced light-element abundance signatures indistinguishable from normal supernovae.
We report the discovery of one RR Lyrae star in the ultra--faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Interamerican Observatory, Chile. The RR Lyrae star has a mean magnitude of $i = 21.30pm 0.04$ which translates to a heliocentric distance of $151pm 8$ kpc for Hydra II; this value is $sim 13%$ larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of $76^{+12}_{-10}$ pc and a brighter absolute magnitude of $M_V = -5.1 pm 0.3$, which keeps this object within the realm of the dwarf galaxies. The pulsational properties of the RR Lyrae star ($P=0.645$ d, $Delta g = 0.68$ mag) suggest Hydra II may be a member of the intermediate Oosterhoff or Oosterhoff II group. A comparison with other RR Lyrae stars in ultra--faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid). However, given their magnitudes and large angular separation from Hydra II, they must be field stars not related to Hydra II.
Aims. We use stellar line-of-sight velocities to constrain the dark matter-density profile of Eridanus 2, an ultra-faint dwarf galaxy ($M_mathrm{V} = -7.1$, $M_* approx 9 times 10^4,M_odot$). We furthermore derive constraints on fundamental properties of self-interacting and fuzzy dark matter scenarios. Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with MUSE on the Very Large Telescope, and determine line-of-sight velocities for stars inside the half-light radius. Combined with literature data, we have 92 stellar tracers out to twice the half-light radius. We constrain models of cold dark matter, self-interacting dark matter, and fuzzy dark matter with these tracers, using CJAM and pyGravSphere for the dynamical analysis. Results. We find substantial evidence for cold dark matter over self-interacting dark matter and weak evidence for fuzzy dark matter over cold dark matter. We find a virial mass $M_{200} sim 10^8,M_odot$ and astrophysical factors $J(alpha_mathrm{c}^J) sim 10^{11},M_odot^2,mathrm{kpc}^{-5}$ and $D(alpha_mathrm{c}^D) sim 10^2$-$10^{2.5},M_odot,mathrm{kpc}^{-2}$. We do not resolve a core ($r_mathrm{c} < 47,mathrm{pc}$, 68-% level) or soliton ($r_mathrm{sol} < 7.2,mathrm{pc}$, 68-% level). These limits are equivalent to an effective self-interaction coefficient $fGamma < 2.2 times 10^{-29},mathrm{cm}^3,mathrm{s}^{-1},mathrm{eV}^{-1},c^2$ and a fuzzy-dark-matter particle mass $m_mathrm{a} > 4.0 times 10^{-20},mathrm{eV},c^{-2}$. The constraint on self-interaction is complementary to those from gamma-ray searches. The constraint on fuzzy-dark-matter particle mass is inconsistent with those obtained for larger dwarf galaxies, suggesting that the flattened density profiles of those galaxies are not caused by fuzzy dark matter. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا