We constructed a gamma-ray detector by combining two types of scintillator array detectors with an MPPC array and evaluated the spectral performance by reading out the signals from the MPPC with a low-power integrated circuit (ASIC) manufactured by IDEAS in Norway. One of the two types of scintillators is a GAGG(Ce) (Ce-doped $ rm{Gd_3Al_2Ga_3O_{12}}$) scintillator, and the other is an LFS scintillator. The scintillator array is 2.5 cm $times$ 2.5 cm in size and is coated with $ rm{BaSO_4}$-based white paint for GAGG(Ce) and an enhanced specular reflector (ESR) for LFS except for the side optically coupled to the MPPC. The spectra derived from the array are affected by the MPPC photon saturations and light leakage from the adjacent pixels, and we carefully corrected for both effects in our data analysis. The energy resolution of 662 keV at 20 $^circ$C is 6.10$pm$0.04% for the GAGG(Ce) scintillator array and 8.57$pm$0.15% for the LFS scintillator array, this is equivalent to the typical energy resolution found in the references. The energy resolution depends on the temperature: the energy resolution improves as the temperature decreases. We found that the contribution of thermal noise from the MPPCs to the energy resolution is negligible within the range of --20 to 40 $^circ$C, and the energy resolution is mainly determined by the light yield of the crystals.