The development of high-resolution imaging methods such as electron and scanning probe microscopy and atomic probe tomography have provided a wealth of information on structure and functionalities of solids. The availability of this data in turn necessitates development of approaches to derive quantitative physical information, much like the development of scattering methods in the early XX century which have given one of the most powerful tools in condensed matter physics arsenal. Here, we argue that this transition requires adapting classical macroscopic definitions, that can in turn enable fundamentally new opportunities in understanding physics and chemistry. For example, many macroscopic definitions such as symmetry can be introduced locally only in a Bayesian sense, balancing the prior knowledge of materials physics and experimental data to yield posterior probability distributions. At the same time, a wealth of local data allows fundamentally new approaches for the description of solids based on construction of statistical and physical generative models, akin to Ginzburg-Landau thermodynamic models. Finally, we note that availability of observational data opens pathways towards exploring causal mechanisms underpinning solid structure and functionality.