A tight $Q$-index condition for a graph to be $k$-path-coverable involving minimum degree


Abstract in English

A graph $G$ is $k$-path-coverable if its vertex set $V(G)$ can be covered by $k$ or fewer vertex disjoint paths. In this paper, using the $Q$-index of a connected graph $G$, we present a tight sufficient condition for $G$ with fixed minimum degree and large order to be $k$-path-coverable.

Download