Do you want to publish a course? Click here

Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints

97   0   0.0 ( 0 )
 Added by Pengcheng Wu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we are interested in the existence of Pareto solutions to vector polynomial optimization problems over a basic closed semi-algebraic set. By invoking some powerful tools from real semi-algebraic geometry, we first introduce the concept called {it tangency varieties}; then we establish connections of the Palais--Smale condition, Cerami condition, {it M}-tameness, and properness related to the considered problem, in which the condition of regularity at infinity plays an essential role in deriving these connections. According to the obtained connections, we provide some sufficient conditions for existence of Pareto solutions to the problem in consideration, and we also give some examples to illustrate our main findings.



rate research

Read More

We consider optimization problems with polynomial inequality constraints in non-commuting variables. These non-commuting variables are viewed as bounded operators on a Hilbert space whose dimension is not fixed and the associated polynomial inequalities as semidefinite positivity constraints. Such problems arise naturally in quantum theory and quantum information science. To solve them, we introduce a hierarchy of semidefinite programming relaxations which generates a monotone sequence of lower bounds that converges to the optimal solution. We also introduce a criterion to detect whether the global optimum is reached at a given relaxation step and show how to extract a global optimizer from the solution of the corresponding semidefinite programming problem.
In this study, we present a general framework of outer approximation algorithms to solve convex vector optimization problems, in which the Pascoletti-Serafini (PS) scalarization is solved iteratively. This scalarization finds the minimum distance from a reference point, which is usually taken as a vertex of the current outer approximation, to the upper image through a given direction. We propose efficient methods to select the parameters (the reference point and direction vector) of the PS scalarization and analyze the effects of these on the overall performance of the algorithm. Different from the existing vertex selection rules from the literature, the proposed methods do not require solving additional single-objective optimization problems. Using some test problems, we conduct an extensive computational study where three different measures are set as the stopping criteria: the approximation error, the runtime, and the cardinality of solution set. We observe that the proposed variants have satisfactory results especially in terms of runtime compared to the existing variants from the literature.
117 - Jiawang Nie , Xindong Tang 2021
This paper studies convex Generalized Nash Equilibrium Problems (GNEPs) that are given by polynomials. We use rational and parametric expressions for Lagrange multipliers to formulate efficient polynomial optimization for computing Generalized Nash Equilibria (GNEs). The Moment-SOS hierarchy of semidefinite relaxations are used to solve the polynomial optimization. Under some general assumptions, we prove the method can find a GNE if there exists one, or detect nonexistence of GNEs. Numerical experiments are presented to show the efficiency of the method.
108 - Zizhuo Wang 2012
In this paper, we propose two algorithms for solving convex optimization problems with linear ascending constraints. When the objective function is separable, we propose a dual method which terminates in a finite number of iterations. In particular, the worst case complexity of our dual method improves over the best-known result for this problem in Padakandla and Sundaresan [SIAM J. Optimization, 20 (2009), pp. 1185-1204]. We then propose a gradient projection method to solve a more general class of problems in which the objective function is not necessarily separable. Numerical experiments show that both our algorithms work well in test problems.
In this article, we view the approximate version of Pareto and weak Pareto solutions of the multiobjective optimization problem through the lens of KKT type conditions. We also focus on an improved version of Geoffrion proper Pareto solutions and characterize them through saddle point and KKT type conditions. We present an approximate version of the improved Geoffrion proper solutions and propose our results in general settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا