Do you want to publish a course? Click here

Charge-density-wave breakdown in a heterostructure with electron-phonon coupling

96   0   0.0 ( 0 )
 Added by David Jansen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the influence of vibrational degrees of freedom on transport through a heterostructure poses considerable theoretical and numerical challenges. In this work, we use the density-matrix renormalization group (DMRG) method together with local basis optimization (LBO) to study the half-filled Holstein model in the presence of a linear potential, either isolated or coupled to tight-binding leads. In both cases, we observe a decay of charge-density-wave (CDW) states at a sufficiently strong potential strength. Local basis optimization selects the most important linear combinations of local oscillator states to span the local phonon space. These states are referred to as optimal modes. We show that many of these local optimal modes are needed to capture the dynamics of the decay, that the most significant optimal mode on the initially occupied sites remains well described by a coherent-state typical for small polarons, and that those on the initially empty sites deviate from the coherent-state form. Additionally, we compute the current through the structure in the metallic regime as a function of voltage. For small voltages, we reproduce results for the Luttinger parameters. As the voltage is increased, the effect of larger electron-phonon coupling strengths becomes prominent. Further, the most significant optimal mode remains almost unchanged when going from the ground state to the current-carrying state in the metallic regime.



rate research

Read More

100 - Feipeng Zheng , Ji Feng 2019
Monolayer 2H-NbSe2 has recently been shown to be a 2-dimensional superconductor, with a coexisting charge-density wave (CDW). As both phenomena are intimately related to electron-lattice interaction, a natural question is how superconductivity and CDW are interrelated through electron-phonon coupling (EPC), which is important to the understanding of 2-dimensional superconductivity. This work investigates the superconductivity of monolayer NbSe2 in CDW phase using the anisotropic Migdal-Eliashberg formalism based on first principles calculations. The mechanism of the competition between and coexistence of the superconductivity and CDW is studied in detail by analyzing EPC. It is found that the intra-pocket scattering is related to superconductivity, leading to almost constant value of superconducting gaps on parts of the Fermi surface. The inter-pocket scattering is found to be responsible for CDW, leading to partial or full bandgap on the remaining Fermi surface. Recent experiment indicates that there is transitioning from regular superconductivity in thin-film NbSe2 to two-gap superconductivity in the bulk, which is shown here to have its origin in the extent of Fermi surface gapping of K and K pockets induced by CDW. Overall blue shifts of the phonons and sharp decrease of Eliashberg spectrum are found when the CDW forms.
We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SrFe_2As_2 exhibiting spin-density wave (SDW) ordering using optical pump-probe femtosecond spectroscopy. A remarkable critical slowing down of the quasiparticle relaxation dynamics at the SDW transition temperature T_SDW = 200K is observed. From temperature dependence of the transient reflectivity amplitude we determine the SDW-state charge gap magnitude, 2Delta_SDW/k_BT_SDW=7.2+-1. The second moment of the Eliashberg function, lambda<(hbar omega)^2>=110+-10meV^2, determined from the relaxation time above T_SDW, is similar to SmFeAsO and BaFe_2As_2 indicating a rather small electron phonon coupling constant unless the electron-phonon spectral function (alpha^2F(omega) is strongly enhanced in the low-energy phonon region.
The Prototypical magnetic memory shape alloy Ni$_2$MnGa undergoes various phase transitions as a function of temperature, pressure, and doping. In the low-temperature phases below 260 K, an incommensurate structural modulation occurs along the [110] direction which is thought to arise from softening of a phonon mode. It is not at present clear how this phenomenon is related, if at all, to the magnetic memory effect. Here we report time-resolved measurements which track both the structural and magnetic components of the phase transition from the modulated cubic phase as it is brought into the high-symmetry phase. The results suggest that the photoinduced demagnetization modifies the Fermi surface in regions that couple strongly to the periodicity of the structural modulation through the nesting vector. The amplitude of the periodic lattice distortion, however, appears to be less affected by the demagnetizaton.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkable properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
219 - Taner Yildirim 2012
Very recently a new family of layered materials, containing BiS2 planes was discovered to be superconducting at temperatures up to Tc=10 K, raising questions about the mechanism of superconductivity in these systems. Here, we present state-of-the-art first principles calculations that directly address this question and reveal several surprising findings. The parent compound LaOBiS2 possesses anharmonic ferroelectric soft phonons at the zone center with a rather large polarization of $approx 10 mu C/cm^2$, which is comparable to the well-known ferroelectric BiFeO3. Upon electron doping, new unstable phonon branches appear along the entire line Q=(q,q,0), causing Bi/S atoms to order in a one-dimensional charge density wave (CDW). We find that BiS2 is a strong electron-phonon coupled superconductor in the vicinity of competing ferroelectric and CDW phases. Our results suggest new directions to tune the balance between these phases and increase Tc in this new class of materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا