Influence of the growth gradient on surface wrinkling and pattern transition in growing tubular tissues


Abstract in English

Growth-induced pattern formations in curved film-substrate structures have attracted extensive attentions recently. In most existing literature, the growth tensor is assumed to be homogeneous or piecewise homogeneous. In this paper, we aim at clarifying the influence of a growth gradient on pattern formation and pattern evolution in bilayered tubular tissues under plane-strain deformation. In the framework of finite elasticity, a bifurcation condition is derived for a general material model and a generic growth function. Then we suppose that both layers are composed of neo-Hookean materials. In particular, the growth function is assumed to decay linearly from the inner surface or from the outer surface. It is found that a gradient in the growth has a weak effect on the critical state, compared to the homogeneous growth type where both layers share the same growth factor. Furthermore, a finite element model is built to validate the theoretical model and to investigate the post-buckling behaviors. It is found that the associated pattern transition is not controlled by the growth gradient but by the ratio of the shear modulus between two layers. Different morphologies can occur when the modulus ratio is varied. The current analysis could provide useful insight into the influence of a growth gradient on surface instabilities and suggests that a homogeneous growth field may provide a good approximation on interpreting complicated morphological formations in multiple systems.

Download