Varying the medium surrounding an optical resonator: An efficient and rigorous way to calculate its spectral changes


Abstract in English

Finding reliably and efficiently the spectrum of the resonant states of an optical system under varying parameters of the medium surrounding it is a technologically important task, primarily due to various sensing applications. Computationally, it presents, however, a fundamental challenge owing to the nature of the eigenstates of an open system lacking completeness outside it. We solve this challenge by making a linear transformation of Maxwells equations which maps perturbations of the surrounding medium onto effective perturbations within the system where the resonant states are complete. By treating such perturbations with the rigorous resonant state expansion, we find the modified modes of the system for arbitrary perturbations of the medium with any required accuracy. Numerically efficient single and few mode approximations are shown to be precise in practically important cases of, respectively, plasmonic nanoparticles and dielectric micro resonators.

Download