No Arabic abstract
Many real-world graphs involve different types of nodes and relations between nodes, being heterogeneous by nature. The representation learning of heterogeneous graphs (HGs) embeds the rich structure and semantics of such graphs into a low-dimensional space and facilitates various data mining tasks, such as node classification, node clustering, and link prediction. In this paper, we propose a self-supervised method that learns HG representations by relying on knowledge exchange and discovery among different HG structural semantics (meta-paths). Specifically, by maximizing the mutual information of meta-path representations, we promote meta-path information fusion and consensus, and ensure that globally shared semantics are encoded. By extensive experiments on node classification, node clustering, and link prediction tasks, we show that the proposed self-supervision both outperforms and improves competing methods by 1% and up to 10% for all tasks.
In recent years, we have witnessed a surge of interest in multi-view representation learning, which is concerned with the problem of learning representations of multi-view data. When facing multiple views that are highly related but sightly different from each other, most of existing multi-view methods might fail to fully integrate multi-view information. Besides, correlations between features from multiple views always vary seriously, which makes multi-view representation challenging. Therefore, how to learn appropriate embedding from multi-view information is still an open problem but challenging. To handle this issue, this paper proposes a novel multi-view learning method, named Multi-view Low-rank Preserving Embedding (MvLPE). It integrates different views into one centroid view by minimizing the disagreement term, based on distance or similarity matrix among instances, between the centroid view and each view meanwhile maintaining low-rank reconstruction relations among samples for each view, which could make more full use of compatible and complementary information from multi-view features. Unlike existing methods with additive parameters, the proposed method could automatically allocate a suitable weight for each view in multi-view information fusion. However, MvLPE couldnt be directly solved, which makes the proposed MvLPE difficult to obtain an analytic solution. To this end, we approximate this solution based on stationary hypothesis and normalization post-processing to efficiently obtain the optimal solution. Furthermore, an iterative alternating strategy is provided to solve this multi-view representation problem. The experiments on six benchmark datasets demonstrate that the proposed method outperforms its counterparts while achieving very competitive performance.
Multi-view network embedding aims at projecting nodes in the network to low-dimensional vectors, while preserving their multiple relations and attribute information. Contrastive learning-based methods have preliminarily shown promising performance in this task. However, most contrastive learning-based methods mostly rely on high-quality graph embedding and explore less on the relationships between different graph views. To deal with these deficiencies, we design a novel node-to-node Contrastive learning framework for Multi-view network Embedding (CREME), which mainly contains two contrastive objectives: Multi-view fusion InfoMax and Inter-view InfoMin. The former objective distills information from embeddings generated from different graph views, while the latter distinguishes different graph views better to capture the complementary information between them. Specifically, we first apply a view encoder to generate each graph view representation and utilize a multi-view aggregator to fuse these representations. Then, we unify the two contrastive objectives into one learning objective for training. Extensive experiments on three real-world datasets show that CREME outperforms existing methods consistently.
Graph neural networks for heterogeneous graph embedding is to project nodes into a low-dimensional space by exploring the heterogeneity and semantics of the heterogeneous graph. However, on the one hand, most of existing heterogeneous graph embedding methods either insufficiently model the local structure under specific semantic, or neglect the heterogeneity when aggregating information from it. On the other hand, representations from multiple semantics are not comprehensively integrated to obtain versatile node embeddings. To address the problem, we propose a Heterogeneous Graph Neural Network with Multi-View Representation Learning (named MV-HetGNN) for heterogeneous graph embedding by introducing the idea of multi-view representation learning. The proposed model consists of node feature transformation, view-specific ego graph encoding and auto multi-view fusion to thoroughly learn complex structural and semantic information for generating comprehensive node representations. Extensive experiments on three real-world heterogeneous graph datasets show that the proposed MV-HetGNN model consistently outperforms all the state-of-the-art GNN baselines in various downstream tasks, e.g., node classification, node clustering, and link prediction.
Understanding intrinsic patterns and predicting spatiotemporal characteristics of cities require a comprehensive representation of urban neighborhoods. Existing works relied on either inter- or intra-region connectivities to generate neighborhood representations but failed to fully utilize the informative yet heterogeneous data within neighborhoods. In this work, we propose Urban2Vec, an unsupervised multi-modal framework which incorporates both street view imagery and point-of-interest (POI) data to learn neighborhood embeddings. Specifically, we use a convolutional neural network to extract visual features from street view images while preserving geospatial similarity. Furthermore, we model each POI as a bag-of-words containing its category, rating, and review information. Analog to document embedding in natural language processing, we establish the semantic similarity between neighborhood (document) and the words from its surrounding POIs in the vector space. By jointly encoding visual, textual, and geospatial information into the neighborhood representation, Urban2Vec can achieve performances better than baseline models and comparable to fully-supervised methods in downstream prediction tasks. Extensive experiments on three U.S. metropolitan areas also demonstrate the model interpretability, generalization capability, and its value in neighborhood similarity analysis.
We present a novel spectral embedding of graphs that incorporates weights assigned to the nodes, quantifying their relative importance. This spectral embedding is based on the first eigenvectors of some properly normalized version of the Laplacian. We prove that these eigenvectors correspond to the configurations of lowest energy of an equivalent physical system, either mechanical or electrical, in which the weight of each node can be interpreted as its mass or its capacitance, respectively. Experiments on a real dataset illustrate the impact of weighting on the embedding.