Monotone Complexity of Spanning Tree Polynomial Re-visited


Abstract in English

We prove two results that shed new light on the monotone complexity of the spanning tree polynomial, a classic polynomial in algebraic complexity and beyond. First, we show that the spanning tree polynomials having $n$ variables and defined over constant-degree expander graphs, have monotone arithmetic complexity $2^{Omega(n)}$. This yields the first strongly exponential lower bound on the monotone arithmetic circuit complexity for a polynomial in VP. Before this result, strongly exponential size monotone lower bounds were known only for explicit polynomials in VNP (Gashkov-Sergeev12, Raz-Yehudayoff11, Srinivasan20, Cavalar-Kumar-Rossman20, Hrubes-Yehudayoff21). Recently, Hrubes20 initiated a program to prove lower bounds against general arithmetic circuits by proving $epsilon$-sensitive lower bounds for monotone arithmetic circuits for a specific range of values for $epsilon in (0,1)$. We consider the spanning tree polynomial $ST_{n}$ defined over the complete graph on $n$ vertices and show that the polynomials $F_{n-1,n} - epsilon cdot ST_{n}$ and $F_{n-1,n} + epsilon cdot ST_{n}$ defined over $n^2$ variables, have monotone circuit complexity $2^{Omega(n)}$ if $epsilon geq 2^{-Omega(n)}$ and $F_{n-1,n} = prod_{i=2}^n (x_{i,1} +cdots + x_{i,n})$ is the complete set-multilinear polynomial. This provides the first $epsilon$-sensitive exponential lower bound for a family of polynomials inside VP. En-route, we consider a problem in 2-party, best partition communication complexity of deciding whether two sets of oriented edges distributed among Alice and Bob form a spanning tree or not. We prove that there exists a fixed distribution, under which the problem has low discrepancy with respect to every nearly-balanced partition. This result could be of interest beyond algebraic complexity.

Download