No Arabic abstract
Todays quantum computers operate with a binary encoding that is the quantum analog of classical bits. Yet, the underlying quantum hardware consists of information carriers that are not necessarily binary, but typically exhibit a rich multilevel structure, which is artificially restricted to two dimensions. A wide range of applications from quantum chemistry to quantum simulation, on the other hand, would benefit from access to higher-dimensional Hilbert spaces, which conventional quantum computers can only emulate. Here we demonstrate a universal qudit quantum processor using trapped ions with a local Hilbert space dimension of up to 7. With a performance similar to qubit quantum processors, this approach enables native simulation of high-dimensional quantum systems, as well as more efficient implementation of qubit-based algorithms.
Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. In this work we present a small-scale quantum information processor based on a string of $^{40}$Ca${^+}$ ions confined in a macroscopic linear Paul trap. We review our set of operations which includes non-coherent operations allowing us to realize arbitrary Markovian processes. In order to build a larger quantum information processor it is mandatory to reduce the error rate of the available operations which is only possible if the physics of the noise processes is well understood. We identify the dominant noise sources in our system and discuss their effects on different algorithms. Finally we demonstrate how our entire set of operations can be used to facilitate the implementation of algorithms by examples of the quantum Fourier transform and the quantum order finding algorithm.
We report the realization of an elementary quantum processor based on a linear crystal of trapped ions. Each ion serves as a quantum bit (qubit) to store the quantum information in long lived electronic states. We present the realization of single-qubit and of universal two-qubit logic gates. The qwo-qubit operation relies on the coupling of the ions through their collective quantized motion. A detailed description of the setup and the methods is included.
Quantum computers hold the promise to solve certain computational task much more efficiently than classical computers. We review the recent experimental advancements towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme.
A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion motional states. The nonlinear coupling, combined with near perfect control of internal and motional states of trapped ions, can be applied to quantum computing, quantum thermodynamics, and even shed some light on the quantum information aspects of Hawking radiation.
We consider the quantum simulation of relativistic quantum mechanics, as described by the Dirac equation and classical potentials, in trapped-ion systems. We concentrate on three problems of growing complexity. First, we study the bidimensional relativistic scattering of single Dirac particles by a linear potential. Furthermore, we explore the case of a Dirac particle in a magnetic field and its topological properties. Finally, we analyze the problem of two Dirac particles that are coupled by a controllable and confining potential. The latter interaction may be useful to study important phenomena as the confinement and asymptotic freedom of quarks.