Quantum Krylov subspace algorithms for ground and excited state energy estimation


Abstract in English

Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to the conventional quantum phase estimation algorithm for estimating the ground and excited-state energies of a quantum many-body system. While QKSD algorithms have typically relied on using the Hadamard test for estimating Krylov subspace matrix elements of the form, $langle phi_i|e^{-ihat{H}tau}|phi_j rangle$, the associated quantum circuits require an ancilla qubit with controlled multi-qubit gates that can be quite costly for near-term quantum hardware. In this work, we show that a wide class of Hamiltonians relevant to condensed matter physics and quantum chemistry contain symmetries that can be exploited to avoid the use of the Hadamard test. We propose a multi-fidelity estimation protocol that can be used to compute such quantities showing that our approach, when combined with efficient single-fidelity estimation protocols, provides a substantial reduction in circuit depth. In addition, we develop a unified theory of quantum Krylov subspace algorithms and present three new quantum-classical algorithms for the ground and excited-state energy estimation problem, where each new algorithm provides various advantages and disadvantages in terms of total number of calls to the quantum computer, gate depth, classical complexity, and stability of the generalized eigenvalue problem within the Krylov subspace.

Download