Do you want to publish a course? Click here

Quantum magnetism of ferromagnetic spin dimers in $alpha$-KVOPO$_4$

85   0   0.0 ( 0 )
 Added by Ramesh Chandra Nath
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetism of the spin-$frac12$ $alpha$-KVOPO$_4$ is studied by thermodynamic measurements, $^{31}$P nuclear magnetic resonance (NMR), neutron diffraction, and density-functional band-structure calculations. Ferromagnetic Curie-Weiss temperature of $theta_{rm CW}simeq 15.9$ K and the saturation field of $mu_0H_ssimeq 11.3$ T suggest the predominant ferromagnetic coupling augmented by a weaker antiferromagnetic exchange that leads to a short-range order below 5 K and the long-range antiferromagnetic order below $T_{rm N}simeq 2.7$ K in zero field. Magnetic structure with the propagation vector $mathbf k=(0,frac12,0)$ and the ordered magnetic moment of 0.58 $mu_B$ at 1.5 K exposes a non-trivial spin lattice where strong ferromagnetic dimers are coupled antiferromagnetically. The reduction in the ordered magnetic moment with respect to the classical value (1 $mu_{rm B}$) indicates sizable quantum fluctuations in this setting, despite the predominance of ferromagnetic exchange. We interpret this tendency toward ferromagnetism as arising from the effective orbital order in the folded chains of the VO$_6$ octahedra.



rate research

Read More

Famous for its spin-state puzzle, LaSrCoO$_4$ (Co$^{3+}$) is an intermediate between antiferromagnetic (AFM) La$_2$CoO$_4$ (Co$^{2+}$) and ferromagnetic (FM) Sr$_2$CoO$_4$ (Co$^{4+}$). The appearance of the Co$^{3+}$ valence state (not present in the end compounds) is intriguing because of the spin-state transitions associated with it. In this work, we report two magnetic transitions in LaSrCoO$_4$: (i) a transition at T $=$ T$_c$ $simeq$ 225 K, from the paramagnetic state to a state with an inhomogeneous long-range ferromagnetic (FM) order wherein finite FM clusters coexist with infinite FM matrix in the percolation sense, and (ii) the transition to the cluster spin glass (CSG) state at T $=$ T$_g$ $simeq$ 8 K. Finite FM clusters (which at low temperatures give rise to the cluster spin glass state) and infinite FM matrix are formed due to the spin-spin interactions brought about by the inhomogeneously distributed Co$^{3+}$ high spin (HS) and Co$^{3+}$ low spin (LS) ions. A firm support to the presence of an unconventional (inhomogeneous) ferromagnetic order comes from the anomalous values of the critical exponents $beta$, $gamma$ and $delta$ for the spontaneous magnetization, `zero-field magnetic susceptibility and the critical M - H isotherm, while the coexistence of HS Co$^{3+}$ and LS Co$^{3+}$ ions is confirmed by the results of the extended X-ray absorption fine structure spectroscopy.
Tungstates $A$WO$_4$ with the wolframite structure characterized by the $A$O$_6$ octahedral zigzag chains along the $c$-axis, can be magnetic if $A$=Mn, Fe, Co, Cu, Ni. Among them, MnWO$_4$ is a unique member with a cycloid Mn$^{2+}$ spin order developed at low temperature, leading to an interesting type-II multiferroic behavior. However, so far no other multiferroic material in the tungstate family has been found. In this work, we present the synthesis and the systematic study of the double tungstate LiFe(WO$_4$)$_2$. Experimental characterizations including structural, thermodynamic, magnetic, neutron powder diffraction, and pyroelectric measurements, unambiguously confirm that LiFe(WO$_4$)$_2$ is the secondly found multiferroic system in the tungstate family. The cycloidal magnetism driven ferroelectricity is also verified by density functional theory calculations. Although here the magnetic couplings between Fe ions are indirect, namely via the so-called super-super-exchanges, the temperatures of magnetic and ferroelectric transitions are surprisingly much higher than those of MnWO$_4$.
The Kitaev model on a honeycomb lattice predicts a paradigmatic quantum spin liquid (QSL) exhibiting Majorana Fermion excitations. The insight that Kitaev physics might be realized in practice has stimulated investigations of candidate materials, recently including alpha-RuCl3. In all the systems studied to date, non-Kitaev interactions induce magnetic order at low temperature. However, in-plane magnetic fields of roughly 8 Tesla suppress the long-range magnetic order in alpha-RuCl3 raising the intriguing possibility of a field-induced QSL exhibiting non-Abelian quasiparticle excitations. Here we present inelastic neutron scattering in alpha-RuCl3 in an applied magnetic field. At a field of 8 Tesla, the spin waves characteristic of the ordered state vanish throughout the Brillouin zone. The remaining single dominant feature of the response is a broad continuum centered at the Gamma point, previously identified as a signature of fractionalized excitations. This provides compelling evidence that a field-induced QSL state has been achieved.
118 - N. Li , Q. Huang , A. Brassington 2021
We have grown single crystals of Na$_2$BaNi(PO$_4$)$_2$, a new spin-1 equilateral triangular lattice antiferromagnet (ETLAF), and performed magnetic susceptibility, specific heat and thermal conductivity measurements at ultralow temperatures. The main results are (i) at zero magnetic field, Na$_2$BaNi(PO$_4$)$_2$ exhibits a magnetic ordering at 430 mK with a weak ferromagnetic moment along the $c$ axis. This suggests a canted 120$^circ$ spin structure, which is in a plane including the crystallographic $c$ axis due to the existence of an easy-axis anisotropy and ferromagnetically stacked along the $c$ axis; (ii) with increasing field along the $c$ axis, a 1/3 magnetization plateau is observed which means the canted 120$^circ$ spin structure is transformed to a up up down (UUD) spin structure. With even higher fields, the UUD phase further evolves to possible V and V phases; (iii) with increasing field along the $a$ axis, the canted 120$^circ$ spin structure is possibly transformed to a umbrella phase and a V phase. Therefore, Na$_2$BaNi(PO$_4$)$_2$ is a rare example of spin-1 ETLAF with single crystalline form to exhibit easy-axis spin anisotropy and series of quantum spin state transitions.
82 - Xin Gui , Weiwei Xie 2020
The design and synthesis of targeted functional materials have been a long-term goal for material scientists. Although a universal design strategy is difficult to generate for all types of materials, however, it is still helpful for a typical family of materials to have such design rules. Herein, we incorporated several significant chemical and physical factors regarding magnetism, such as structure type, atom distance, spin-orbit coupling, and successfully synthesized a new rare-earth-free ferromagnet, MnPt5As, for the first time. MnPt5As can be prepared by using high-temperature pellet methods. According to X-ray diffraction results, MnPt5As crystallizes in a tetragonal unit cell with the space group P4/mmm (Pearson symbol tP7). Magnetic measurements on MnPt5As confirm ferromagnetism in this phase with a Curie temperature of ~301 K and a saturated moment of 3.5 uB per formula. Evaluation by applying the Stoner Criterion also indicates that MnPt5As is susceptible to ferromagnetism. Electronic structure calculations using the WIEN2k program with local spin density approximation imply that the spontaneous magnetization of this phase arises primarily from the hybridization of d orbitals on both Mn and Pt atoms. The theoretical assessments are consistent with the experimental results. Moreover, the spin-orbit coupling effects heavily influence on magnetic moments in MnPt5As. MnPt5As is the first high-performance magnetic material in this structure type. The discovery of MnPt5As offers a platform to study the interplay between magnetism and structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا