Do you want to publish a course? Click here

The Logic of Quantum Programs

130   0   0.0 ( 0 )
 Added by Sonja Smets
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a logical calculus for reasoning about information flow in quantum programs. In particular we introduce a dynamic logic that is capable of dealing with quantum measurements, unitary evolutions and entanglements in compound quantum systems. We give a syntax and a relational semantics in which we abstract away from phases and probabilities. We present a sound proof system for this logic, and we show how to characterize by logical means various forms of entanglement (e.g. the Bell states) and various linear operators. As an example we sketch an analysis of the teleportation protocol.



rate research

Read More

Distributed quantum systems and especially the Quantum Internet have the ever-increasing potential to fully demonstrate the power of quantum computation. This is particularly true given that developing a general-purpose quantum computer is much more difficult than connecting many small quantum devices. One major challenge of implementing distributed quantum systems is programming them and verifying their correctness. In this paper, we propose a CSP-like distributed programming language to facilitate the specification and verification of such systems. After presenting its operational and denotational semantics, we develop a Hoare-style logic for distributed quantum programs and establish its soundness and (relative) completeness with respect to both partial and total correctness. The effectiveness of the logic is demonstrated by its applications in the verification of quantum teleportation and local implementation of non-local CNOT gates, two important algorithms widely used in distributed quantum systems.
112 - Vincent Nys 2017
We extend a technique called Compiling Control. The technique transforms coroutining logic programs into logic programs that, when executed under the standard left-to-right selection rule (and not using any delay features) have the same computational behavior as the coroutining program. In recent work, we revised Compiling Control and reformulated it as an instance of Abstract Conjunctive Partial Deduction. This work was mostly focused on the program analysis performed in Compiling Control. In the current paper, we focus on the synthesis of the transformed program. Instead of synthesizing a new logic program, we synthesize a CHR(Prolog) program which mimics the coroutining program. The synthesis to CHR yields programs containing only simplification rules, which are particularly amenable to certain static analysis techniques. The programs are also more concise and readable and can be ported to CHR implementations embedded in other languages than Prolog.
In this note we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming (ASP) for dealing with linear-time modal operators. To this aim, we provide a definition of a first-order version of TEL that shares the syntax of first-order Linear-time Temporal Logic (LTL) but has a different semantics, selecting some LTL models we call temporal stable models. Then, we consider a subclass of theories (called splittable temporal logic programs) that are close to usual logic programs but allowing a restricted use of temporal operators. In this setting, we provide a syntactic definition of safe variables that suffices to show the property of domain independence -- that is, addition of arbitrary elements in the universe does not vary the set of temporal stable models. Finally, we present a method for computing the derivable facts by constructing a non-temporal logic program with variables that is fed to a standard ASP grounder. The information provided by the grounder is then used to generate a subset of ground temporal rules which is equivalent to (and generally smaller than) the full program instantiation.
Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the {em canonical answer set semantics}, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.
Abstract interpretation is a well-established technique for performing static analyses of logic programs. However, choosing the abstract domain, widening, fixpoint, etc. that provides the best precision-cost trade-off remains an open problem. This is in a good part because of the challenges involved in measuring and comparing the precision of different analyses. We propose a new approach for measuring such precision, based on defining distances in abstract domains and extending them to distances between whole analyses of a given program, thus allowing comparing precision across different analyses. We survey and extend existing proposals for distances and metrics in lattices or abstract domains, and we propose metrics for some common domains used in logic program analysis, as well as extensions of those metrics to the space of whole program analysis. We implement those metrics within the CiaoPP framework and apply them to measure the precision of different analyses over both benchmarks and a realistic program.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا