Characterizing Extreme Emission Line Galaxies II: A Self-Consistent Model of Their Ionizing Spectrum


Abstract in English

Observations of high-redshift galaxies ($z >$ 5) have shown that these galaxies have extreme emission lines with equivalent widths much larger than their local star-forming counterparts. Extreme emission line galaxies (EELGs) in the nearby universe are likely analogues to galaxies during the Epoch of Reionization and provide nearby laboratories to understand the physical processes important to the early universe. We use HST/COS and LBT/MODS spectra to study two nearby EELGs, J104457 and J141851. The FUV spectra indicate that these two galaxies contain stellar populations with ages $< sim$ 10 Myr and metallicities $leq$ 0.15 Z$_odot$. We use photoionization modeling to compare emission lines from models of single-age bursts of star-formation to observed emission lines and find that the single-age bursts do not reproduce high-ionization lines including [O III] or very-high ionization lines like He II or [O IV]. Photoionization modeling using the stellar populations fit from the UV continuum similarly are not capable of reproducing the emission lines from the very-high ionization zone. We add a blackbody to the stellar populations fit from the UV continuum to model the necessary high-energy photons to reproduce the very-high ionization lines of He II and [O IV]. We find that we need a blackbody of 80,000 K and $sim$60-70% of the luminosity from the young stellar population to reproduce the very-high ionization lines while simultaneously reproducing the low- intermediate-, and high-ionization emission lines. Our self-consistent model of the ionizing spectra of two nearby EELGs indicates the presence of a previously unaccounted-for source of hard ionizing photons in reionization analogues.

Download