Do you want to publish a course? Click here

Unexpected enhancement of ferroelectricity in HfO2 on SiO2 and GeO2

74   0   0.0 ( 0 )
 Added by Huanglong Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferroelectric HfO2 (fe-HfO2) has garnered increasing research interest for nonvolatile memories and low-power transistors. However, many challenges are to be resolved. One of them is the depolarizing effect that is commonly attributed to the formation of fe-HfO2: electrode interface. In addition to this interface, it is not hard to find that HfO2 is rarely used in isolation but most often in combination with non-ferroelectric dielectric in real device for practical reasons. This leads to the formation of fe-HfO2: dielectric interface. Recently, counterintuitive enhancement of ferroelectricity in fe-HfO2 grown on SiO2 has been discovered experimentally, opening up a previously unknown region in design space. Yet, a deeper understanding of the role of SiO2 in enabling the enhanced ferroelectricity in fe-HfO2 still lacks. Here, we investigate the electronic structures of ten fe-HfO2: oxide dielectric interfaces. We find that while in most cases, as expected, interface formation introduces depolarizing fields in fe-HfO2, SiO2 and GeO2 stand out as two abnormal dielectrics in the sense that they surprisingly hyperpolarize fe-HfO2, in consistence with the experimental findings. We provide explanations from a chemical bonding perspective. This work suggests that the interplay between fe-HfO2 and non-ferroelectric dielectric is nontrivial and cannot be neglected toward an improved understanding of HfO2 ferroelectricity.



rate research

Read More

Ferroelectric HfO2-based materials hold great potential for widespread integration of ferroelectricity into modern electronics due to their robust ferroelectric properties at the nanoscale and compatibility with the existing Si technology. Earlier work indicated that the nanometer crystal grain size was crucial for stabilization of the ferroelectric phase of hafnia. This constraint caused high density of unavoidable structural defects of the HfO2-based ferroelectrics, obscuring the intrinsic ferroelectricity inherited from the crystal space group of bulk HfO2. Here, we demonstrate the intrinsic ferroelectricity in Y-doped HfO2 films of high crystallinity. Contrary to the common expectation, we show that in the 5% Y-doped HfO2 epitaxial thin films, high crystallinity enhances the spontaneous polarization up to a record-high 50 {mu}C/cm2 value at room temperature. The high spontaneous polarization persists at reduced temperature, with polarization values consistent with our theoretical predictions, indicating the dominant contribution from the intrinsic ferroelectricity. The crystal structure of these films reveals the Pca21 orthorhombic phase with a small rhombohedral distortion, underlining the role of the anisotropic stress and strain. These results open a pathway to controlling the intrinsic ferroelectricity in the HfO2-based materials and optimizing their performance in applications.
HfO2, a simple binary oxide, holds ultra-scalable ferroelectricity integrable into silicon technology. Polar orthorhombic (Pbc21) form in ultra-thin-films ascribes as the plausible root-cause of the astonishing ferroelectricity, which has thought not attainable in bulk crystals. Though, perplexities remain primarily due to the polymorphic nature and the characterization challenges at small-length scales. Herein, utilizing a state-of-the-art Laser-Diode-heated Floating Zone technique, we report ferroelectricity in bulk single-crystalline HfO2:Y as well as the presence of anti-polar Pbca phase at different Y concentrations. Neutron diffraction and atomic imaging demonstrate (anti-)polar crystallographic signatures and abundant 90o/180o ferroelectric domains in addition to the switchable polarization with little wake-up effects. Density-functional theory calculations suggest that the Yttrium doping and rapid cooling are the key factors for the desired phase. Our observations provide new insights into the polymorphic nature and phase controlling of HfO2, remove the upper size limit for ferroelectricity, and also pave a new road toward the next-generation ferroelectric devices.
First-principle study of bismuth-related oxygen-deficient centers ($=$Bi$cdots$Ge$equiv$, $=$Bi$cdots$Si$equiv$, and $=$Bi$cdots$Bi$=$ oxygen vacancies) in Bi$_2$O$_3$-GeO$_2$, Bi$_2$O$_3$-SiO$_2$, Bi$_2$O$_3$-Al$_2$O$_3$-GeO$_2$, and Bi$_2$O$_3$-Al$_2$O$_3$-SiO$_2$ hosts is performed. A comparison of calculated spectral properties of the centers with the experimental data on luminescence emission and excitation spectra suggests that luminescence in the 1.2-1.3 $mu$m and 1.8-3.0 $mu$m ranges in Bi$_2$O$_3$-GeO$_2$ glasses and crystals is likely caused by $=$Bi$cdots$Ge$equiv$ and $=$Bi$cdots$Bi$=$ centers, respectively, and the luminescence near 1.1 $mu$m in Bi$_2$O$_3$-Al$_2$O$_3$-GeO$_2$ glasses and crystals may be caused by $=$Bi$cdots$Ge$equiv$ center with (AlO$_4$)$^-$ center in the second coordination shell of Ge atom.
127 - X. W. Dong , S. Dong , K. F. Wang 2010
A series of polycrystalline pyrochlore rare-earth titanate Ho_{2-x}Cr_xTi_2O_7 are synthesized in order to enhance the ferroelectricity of pyrochlore Ho2Ti2O7. For the sample close to the doping level x=0.4, a giant enhancement of polarization P up to 660muC/m2 from 0.54muC/m2 at x=0 is obtained, accompanied with an increment of ferroelectric transition point Tc up to ~140K from ~60K. A magnetic anomaly at T~140K together with the polarization response to magnetic field, is identified, implying the multiferroic effect in Ho2-xCrxTi2O7.
Ab initio techniques are used to calculate the effective work function (Weff) of a TiN/HfO2/SiO2/Si stack representing a metal-oxide-semiconductor (MOS) transistor gate taking into account first order many body effects. The required band offsets were calculated at each interface varying its composition. Finally the transitivity of LDA calculated bulk band lineups were used and completed by MBPT bulk corrections for the terminating materials (Si and TiN) of the MOS stack. With these corrections the ab initio calculations predict a Weff of a TiN metal gate on HfO2 to be close to 5.0 eV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا