Do you want to publish a course? Click here

Deeply Buried Nuclei in the Infrared-Luminous Galaxies NGC 4418 and Arp 220: I. ALMA Observations at $lambda = $1.4-0.4 mm and Continuum Analysis

160   0   0.0 ( 0 )
 Added by Kazushi Sakamoto
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observed with ALMA three deeply buried nuclei in two galaxies, NGC 4418 and Arp 220, at $sim$0.2$$ resolution over a total bandwidth of 67 GHz in $f_{rm rest}$ = 215 - 697 GHz. Here we (1) introduce our program, (2) describe our data reduction method for wide-band, high-resolution imaging spectroscopy, (3) analyze in visibilities the compact nuclei with line forests, (4) develop a continuum-based estimation method of dust opacity and gas column density in heavily obscured nuclei, which uses the BGN (buried galactic nuclei) model and is sensitive to $log(N_{rm H_2}/{rm cm}^{-2}) sim $ 25 - 26 at $lambda sim 1$ mm, and (5) present the continuum data and diagnosis of our targets. The three continuum nuclei have major-axis FWHM of $sim$0.1$$-0.3$$ (20-140 pc) aligned to their rotating nuclear disks of molecular gas. However, each nucleus is described better with two or three concentric components than with a single Gaussian. The innermost cores have sizes of 0.05$$-0.10$$ (8-40 pc), peak brightness temperatures of ~100-500 K at 350 GHz, and more fractional flux at lower frequencies. The intermediate components correspond to the nuclear disks. They have axial ratios of $approx$0.5 and hence inclinations $stackrel{>}{sim} 60$ deg. The outermost elements include the bipolar outflow from Arp 220W. We estimate 1 mm dust opacity of $tau_{rm d,1mm} approx 2.2$, $1.2$, and $stackrel{<}{sim} 0.4$ respectively for NGC 4418, Arp 220W, and Arp 220E. The first two correspond to $log(N_{rm H}/{rm cm}^{-2}) sim 26$ for conventional dust-opacity laws, and hence the nuclei are highly Compton thick.



rate research

Read More

We analyze 3 mm emission of the ultraluminous infrared galaxy Arp 220 for spatially-resolved structure and spectral properties of the merger nuclei. ALMA archival data at ~0.05 resolution are used for extensive visibility fitting and deep imaging of continuum emission. The data are fitted well with two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in individual nuclei are similar in shape and extent, ~100-150 pc, to the cm-wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures (Tb) more than twice higher than in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak Tb ~ 530 K and a full width at half maximum of about 20 pc. This component is estimated to have a bolometric luminosity on the order of 10^{12.5} Lsun and a 20 pc-scale luminosity surface density 10^{15.5} Lsun/kpc^2. A luminous AGN is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus --- a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (i ~ 60 deg) western nuclear disk.
We report the results of HCN(J=4-3) and HCO+(J=4-3) observations of two luminous infrared galaxies (LIRGs), NGC 4418 and Arp 220, made using the Atacama Submillimeter Telescope Experiment (ASTE). The ASTE wide-band correlator provided simultaneous observations of HCN(4-3) and HCO+(4-3) lines, and a precise determination of their flux ratios. Both galaxies showed high HCN(4-3) to HCO+(4-3) flux ratios of >2, possibly due to AGN-related phenomena. The J = 4-3 to J = 1-0 transition flux ratios for HCN (HCO+) are similar to those expected for fully thermalized (sub-thermally excited) gas in both sources, in spite of HCNs higher critical density. If we assume collisional excitation and neglect an infrared radiative pumping process, our non-LTE analysis suggests that HCN traces gas with significantly higher density than HCO+. In Arp 220, we separated the double-peaked HCN(4-3) emission into the eastern and western nuclei, based on velocity information. We confirmed that the eastern nucleus showed a higher HCN(4-3) to HCN(1-0) flux ratio, and thus contained a larger amount of highly excited molecular gas than the western nucleus.
381 - F. Costagliola 2015
We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis. We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and six vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 10$^5$ and 10$^7$ cm$^{-3}$. The spectrum is dominated by vibrationally excited HC$_3$N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find high abundances of HC$_3$N, SiO, H$_2$S, and c-HCCCH and a low CH$_3$OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments. The similar molecular abundances observed towards NCG 4418 and Arp 220 are consistent with a hot gas-phase chemistry, with the relative abundances of SiO and CH$_3$OH being regulated by shocks and X-ray driven dissociation. The bright emission from vibrationally excited species confirms the presence of a compact IR source, with an effective diameter $<$5 pc and brightness temperatures $>$350 K. The molecular abundances and the vibrationally excited spectrum are consistent with a young AGN/starburst system. We suggest that NGC 4418 may be a template for a new kind of chemistry and excitation, typical of compact obscured nuclei (CON). Because of the narrow line widths and bright molecular emission, NGC 4418 is the ideal target for further studies of the chemistry in CONs.
We report ALMA Band 7 (350 GHz) imaging at 0.4 - 0.6arcsec resolution and Band 9 (696 GHz) at ~0.25arcsec resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate ISM masses for Arp 220 East, West and NGC 6240 of 1.9, 4.2 and 1.6x10^9 msun within radii of 69, 65 and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n_H2 ~10^5 cm^-3 at R < 50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n_H2 ~2x10^5 cm^-3. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e. it is not cloudy or like swiss cheese.
In external galaxies, molecular composition may be influenced by extreme environments such as starbursts and galaxy mergers. To study such molecular chemistry, we observed the luminous-infrared galaxy and merger NGC 3256 using the Atacama Large Millimeter/sub-millimeter Array. We covered most of the 3-mm and 1.3-mm bands for a multi-species, multi-transition analysis. We first analyzed intensity ratio maps of selected lines such as HCN/HCO$^+$, which shows no enhancement at an AGN. We then compared the chemical compositions within NGC 3256 at the two nuclei, tidal arms, and positions with influence from galactic outflows. We found the largest variation in SiO and CH$_3$OH, species that are likely to be enhanced by shocks. Next, we compared the chemical compositions in the nuclei of NGC 3256, NGC 253, and Arp 220; these galactic nuclei have varying star formation efficiencies. Arp 220 shows higher abundances of SiO and HC$_3$N than NGC 3256 and NGC 253. Abundances of most species do not show strong correlation with the star formation efficiencies, although the CH$_3$CCH abundance seems to have a weak positive correlation with the star formation efficiency. Lastly, the chemistry of spiral arm positions in NGC 3256 is compared with that of W 51, a Galactic molecular cloud complex in a spiral arm. We found higher fractional abundances of shock tracers, and possibly also higher dense gas fraction in NGC 3256 compared with W 51.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا