Do you want to publish a course? Click here

How to address cellular heterogeneity by distribution biology

251   0   0.0 ( 0 )
 Added by Niko Komin
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Cellular heterogeneity is an immanent property of biological systems that covers very different aspects of life ranging from genetic diversity to cell-to-cell variability driven by stochastic molecular interactions, and noise induced cell differentiation. Here, we review recent developments in characterizing cellular heterogeneity by distributions and argue that understanding multicellular life requires the analysis of heterogeneity dynamics at single cell resolution by integrative approaches that combine methods from non-equilibrium statistical physics, information theory and omics biology.



rate research

Read More

139 - Evan J. Molinelli 2013
We present a new experimental-computational technology of inferring network models that predict the response of cells to perturbations and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is measured in terms of levels of proteins and phospho-proteins and of cellular phenotype such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, belief propagation, which is three orders of magnitude more efficient than Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in Skmel-133 melanoma cell lines, which are resistant to the therapeutically important inhibition of Raf kinase. The resulting network models reproduce and extend known pathway biology. They can be applied to discover new molecular interactions and to predict the effect of novel drug perturbations, one of which is verified experimentally. The technology is suitable for application to larger systems in diverse areas of molecular biology.
Models of biological systems often have many unknown parameters that must be determined in order for model behavior to match experimental observations. Commonly-used methods for parameter estimation that return point estimates of the best-fit parameters are insufficient when models are high dimensional and under-constrained. As a result, Bayesian methods, which treat model parameters as random variables and attempt to estimate their probability distributions given data, have become popular in systems biology. Bayesian parameter estimation often relies on Markov Chain Monte Carlo (MCMC) methods to sample model parameter distributions, but the slow convergence of MCMC sampling can be a major bottleneck. One approach to improving performance is parallel tempering (PT), a physics-based method that uses swapping between multiple Markov chains run in parallel at different temperatures to accelerate sampling. The temperature of a Markov chain determines the probability of accepting an unfavorable move, so swapping with higher temperatures chains enables the sampling chain to escape from local minima. In this work we compared the MCMC performance of PT and the commonly-used Metropolis-Hastings (MH) algorithm on six biological models of varying complexity. We found that for simpler models PT accelerated convergence and sampling, and that for more complex models, PT often converged in cases MH became trapped in non-optimal local minima. We also developed a freely-available MATLAB package for Bayesian parameter estimation called PTempEst (http://github.com/RuleWorld/ptempest), which is closely integrated with the popular BioNetGen software for rule-based modeling of biological systems.
Synthetic biology is the engineering of cellular networks. It combines principles of engineering and the knowledge of biological networks to program the behavior of cells. Computational modeling techniques in conjunction with molecular biology techniques have been successful in constructing biological devices such as switches, oscillators, and gates. The ambition of synthetic biology is to construct complex systems from such fundamental devices, much in the same way electronic circuits are built from basic parts. As this ambition becomes a reality, engineering concepts such as interchangeable parts and encapsulation will find their way into biology. We realize that there is a need for computational tools that would support such engineering concepts in biology. As a solution, we have developed the software Athena that allows biological models to be constructed as modules. Modules can be connected to one another without altering the modules themselves. In addition, Athena houses various tools useful for designing synthetic networks including tools to perform simulations, automatically derive transcription rate expressions, and view and edit synthetic DNA sequences. New tools can be incorporated into Athena without modifying existing program via a plugin interface, IronPython scripts, Systems Biology Workbench interfacing and the R statistical language. The program is currently for Windows operating systems, and the source code for Athena is made freely available through CodePlex, www.codeplex.com/athena.
Data science has emerged from the proliferation of digital data, coupled with advances in algorithms, software and hardware (e.g., GPU computing). Innovations in structural biology have been driven by similar factors, spurring us to ask: can these two fields impact one another in deep and hitherto unforeseen ways? We posit that the answer is yes. New biological knowledge lies in the relationships between sequence, structure, function and disease, all of which play out on the stage of evolution, and data science enables us to elucidate these relationships at scale. Here, we consider the above question from the five key pillars of data science: acquisition, engineering, analytics, visualization and policy, with an emphasis on machine learning as the premier analytics approach.
Quantum Biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (Quantum Biology at Cellular Level), a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. Key words. decoherence, macroscopic superpositions, basis-dependence, formal superposition, non-classical correlations, Basis-Dependent Selection (BDS), synthetic biology, evolvability mechanism loophole.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا