Do you want to publish a course? Click here

Prospects for the polarimetric mapping of the Sgr A molecular cloud complex with IXPE

94   0   0.0 ( 0 )
 Added by Riccardo Ferrazzoli
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The X-ray polarization degree of the molecular clouds that surround Sgr A* is expected to be greatly lowered because the polarized reflection emission is mixed with the unpolarized thermal emission that pervades the Galactic center region. Hence, this will be a challenging observation for the upcoming Imaging X-ray Polarimeter Explorer (IXPE). We aim to determine the detectability of four molecular clouds (MC) of the Sgr A complex (MC2, Bridge B2, Bridge E, and G0.11-0.11) in a realistic IXPE pointing of the Sgr A field of view. We assess the Minimum Detectable Polarization (MDP) increase when a MC is off axis. We provide two different strategies to reconstruct the intrinsic cloud polarization once the data will be available. We use the Monte Carlo tool ixpeobssim to simulate IXPE observations of the Sgr A MC complex. We use Chandra maps and spectra to model the diffuse emission in the Galactic center region along with a realistic model of the instrumental and diffuse background. We create synthetic polarization products of the unpolarized emission. We combine them with a test dataset from a simulation of a 2 Ms long IXPE observation to retrieve the intrinsic polarization degree of the MCs. We find that for the MC considered here, the MDP increases by 1-15% with respect to the case in which a cloud is observed on-axis. We successfully retrieve the intrinsic polarization degree in the 4.0-8.0 keV band and line-of-sight distance of one of them taken as an example, G0.11-0.11, by correcting the observed (i.e., for a 2 Ms-long simulation) polarization degree map using either a synthetic dilution map or a Stokes intensity map of the unpolarized emission. With both methods, the position of the cloud along the line-of-sight is derived from the reconstructed polarization degree with an uncertainty of 7 and 4 pc, respectively.



rate research

Read More

The X-ray polarization properties of the reflection nebulae in the Galactic center inform us about the direction of the illuminating source (through the polarization angle) and the cloud position along the line of sight (through the polarization degree). However, the detected polarization degree is expected to be lowered because the polarized emission of the clouds is mixed with the unpolarized diffuse emission that permeates the Galactic center region. In a real observation, also the morphological smearing of the source due to the point spread function and the unpolarized instrumental background contribute in diluting the polarization degree. So far, these effects have never been included in the estimation of the dilution. We evaluate the detectability of the X-ray polarization predicted for the MC2, Bridge-B2, G0.11-0.11, Sgr B2, Sgr C1, Sgr C2, and Sgr C3 molecular clouds with modern X-ray imaging polarimeters such as the Imaging X-ray Polarimetry Explorer (IXPE) and the Enhanced X-ray Timing and Polarimetry mission (eXTP). We perform realistic simulations of X-ray polarimetric observations considering (with the aid of Chandra maps and spectra) the spatial, spectral, and polarization properties of all the diffuse emission and background components in each region of interest. We find that in the 4.0-8.0 keV band, where the emission of the molecular clouds outshines the other components, the dilution of the polarization degree, including the contribution due to the morphological smearing of the source, ranges between $sim$19% and $sim$55%. We conclude that for some distance values reported in the literature, the diluted polarization degree of G0.11-0.11, Sgr B2, Bridge-B2, Bridge-E, Sgr C1, and Sgr C3 may be detectable in a 2 Ms long IXPE observations. The enhanced capabilities of eXTP may allow detecting the 4.0-8.0 keV of all the targets considered here.
114 - K. Liu , N. Wex , M. Kramer 2011
The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed investigation of the spacetime of the supermassive black hole. This paper shows that pulsar timing, including that of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations with 100 micro-second precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz. Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass, spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors. Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods below ~0.3 yr is there the possibility of having negligible external perturbations. For such orbits we expect a ~10^-3 test of the frame dragging and a ~10^-2 test of the no-hair theorem within 5 years, if Sgr A* is spinning rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of the distance to the Galactic center, R0. A combination of pulsar timing with the astrometric results of stellar orbits would greatly improve the measurement precision of R0.
We observed the G305 star forming complex in the $J=3text{-}2$ lines of $^{12}$CO and $^{13}$CO to investigate how molecular gas surrounding the central stellar clusters is being impacted by feedback. The APEX telescopes LAsMA multi-beam receiver was used to observe the region. Excitation temperatures and column density maps were produced. Combining our data with data from the SEDIGISM survey resulted in a $^{13}$CO $J=3text{-}2/2text{-}1$ excitation map. To verify whether feedback from stellar clusters is responsible for exciting the gas, the distribution of CO excitation was compared with that of 8$,murm{m}$ emission imaged with Spitzer, which is dominated by UV-excited emission from PAHs. Line centroid velocities, as well as stacked line profiles were examined to investigate the effect of feedback on the gas dynamics. Line profiles along radially outward directions demonstrate that the excitation temperature and $^{13}$CO $J=3text{-}2/2text{-}1$ ratio increase steeply by factors of $sim,2-3$ at the edge of the denser gas traced by $^{13}$CO that faces the hot stars at the center of the complex and steadily decreases away from it. Column density also increases at the leading edge, but does not always decrease steadily outward. Regions with higher 8$,murm{m}$ flux have higher median excitation temperatures, column densities and $^{13}$CO $J=3text{-}2/2text{-}1$ ratio. The centroid velocity probability distribution function of the region shows exponential wings, indicative of turbulence driven by strong stellar winds. Stacked spectra in regions with stronger feedback have higher skewness and narrower peaks with pronounced wings compared to regions with weaker feedback. Feedback from the stellar cluster in G305 has demonstrable effects on the excitation as well as on the dynamics of the giant molecular cloud.
144 - N. F. H. Tothill 2009
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex - Lupus I, III, and IV - trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km/s. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding HI shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an HI shell.
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear velocity gradients across the cores measured in our targets nicely agree with the well-known power-law correlation between the specific angular momentum and core size, it is unclear if the observed gradients represent core-scale rotation. In addition, our Argus data reveal detailed and intriguing gas structures in position-velocity (PV) space for all 5 targets studied in this project, which could suggest that the velocity gradients previously observed in many dense cores actually originate from large-scale turbulence or convergent flow compression instead of rigid-body rotation. We also note that there are targets in this study with their star-forming disks nearly perpendicular to the local velocity gradients, which, assuming the velocity gradient represents the direction of rotation, is opposite to what is described by the classical theory of star formation. This provides important insight on the transport of angular momentum within star-forming cores, which is a critical topic on studying protostellar disk formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا