Do you want to publish a course? Click here

Scalable Font Reconstruction with Dual Latent Manifolds

66   0   0.0 ( 0 )
 Added by Nikita Srivatsan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a deep generative model that performs typography analysis and font reconstruction by learning disentangled manifolds of both font style and character shape. Our approach enables us to massively scale up the number of character types we can effectively model compared to previous methods. Specifically, we infer separate latent variables representing character and font via a pair of inference networks which take as input sets of glyphs that either all share a character type, or belong to the same font. This design allows our model to generalize to characters that were not observed during training time, an important task in light of the relative sparsity of most fonts. We also put forward a new loss, adapted from prior work that measures likelihood using an adaptive distribution in a projected space, resulting in more natural images without requiring a discriminator. We evaluate on the task of font reconstruction over various datasets representing character types of many languages, and compare favorably to modern style transfer systems according to both automatic and manually-evaluated metrics.



rate research

Read More

We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is able to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.
We study scalable and uniform understanding of facts in images. Existing visual recognition systems are typically modeled differently for each fact type such as objects, actions, and interactions. We propose a setting where all these facts can be modeled simultaneously with a capacity to understand unbounded number of facts in a structured way. The training data comes as structured facts in images, including (1) objects (e.g., $<$boy$>$), (2) attributes (e.g., $<$boy, tall$>$), (3) actions (e.g., $<$boy, playing$>$), and (4) interactions (e.g., $<$boy, riding, a horse $>$). Each fact has a semantic language view (e.g., $<$ boy, playing$>$) and a visual view (an image with this fact). We show that learning visual facts in a structured way enables not only a uniform but also generalizable visual understanding. We propose and investigate recent and strong approaches from the multiview learning literature and also introduce two learning representation models as potential baselines. We applied the investigated methods on several datasets that we augmented with structured facts and a large scale dataset of more than 202,000 facts and 814,000 images. Our experiments show the advantage of relating facts by the structure by the proposed models compared to the designed baselines on bidirectional fact retrieval.
Diverse and accurate vision+language modeling is an important goal to retain creative freedom and maintain user engagement. However, adequately capturing the intricacies of diversity in language models is challenging. Recent works commonly resort to latent variable models augmented with more or less supervision from object detectors or part-of-speech tags. Common to all those methods is the fact that the latent variable either only initializes the sentence generation process or is identical across the steps of generation. Both methods offer no fine-grained control. To address this concern, we propose Seq-CVAE which learns a latent space for every word position. We encourage this temporal latent space to capture the intention about how to complete the sentence by mimicking a representation which summarizes the future. We illustrate the efficacy of the proposed approach to anticipate the sentence continuation on the challenging MSCOCO dataset, significantly improving diversity metrics compared to baselines while performing on par w.r.t sentence quality.
In this paper, we propose a scalable image compression scheme, including the base layer for feature representation and enhancement layer for texture representation. More specifically, the base layer is designed as the deep learning feature for analysis purpose, and it can also be converted to the fine structure with deep feature reconstruction. The enhancement layer, which serves to compress the residuals between the input image and the signals generated from the base layer, aims to faithfully reconstruct the input texture. The proposed scheme can feasibly inherit the advantages of both compress-then-analyze and analyze-then-compress schemes in surveillance applications. The performance of this framework is validated with facial images, and the conducted experiments provide useful evidences to show that the proposed framework can achieve better rate-accuracy and rate-distortion performance over conventional image compression schemes.
Font generation is a challenging problem especially for some writing systems that consist of a large number of characters and has attracted a lot of attention in recent years. However, existing methods for font generation are often in supervised learning. They require a large number of paired data, which is labor-intensive and expensive to collect. Besides, common image-to-image translation models often define style as the set of textures and colors, which cannot be directly applied to font generation. To address these problems, we propose novel deformable generative networks for unsupervised font generation (DGFont). We introduce a feature deformation skip connection (FDSC) which predicts pairs of displacement maps and employs the predicted maps to apply deformable convolution to the low-level feature maps from the content encoder. The outputs of FDSC are fed into a mixer to generate the final results. Taking advantage of FDSC, the mixer outputs a high-quality character with a complete structure. To further improve the quality of generated images, we use three deformable convolution layers in the content encoder to learn style-invariant feature representations. Experiments demonstrate that our model generates characters in higher quality than state-of-art methods. The source code is available at https://github.com/ecnuycxie/DG-Font.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا