No Arabic abstract
Bill writing is a critical element of representative democracy. However, it is often overlooked that most legislative bills are derived, or even directly copied, from other bills. Despite the significance of bill-to-bill linkages for understanding the legislative process, existing approaches fail to address semantic similarities across bills, let alone reordering or paraphrasing which are prevalent in legal document writing. In this paper, we overcome these limitations by proposing a 5-class classification task that closely reflects the nature of the bill generation process. In doing so, we construct a human-labeled dataset of 4,721 bill-to-bill relationships at the subsection-level and release this annotated dataset to the research community. To augment the dataset, we generate synthetic data with varying degrees of similarity, mimicking the complex bill writing process. We use BERT variants and apply multi-stage training, sequentially fine-tuning our models with synthetic and human-labeled datasets. We find that the predictive performance significantly improves when training with both human-labeled and synthetic data. Finally, we apply our trained model to infer section- and bill-level similarities. Our analysis shows that the proposed methodology successfully captures the similarities across legal documents at various levels of aggregation.
In this paper we introduce a framework for annotating a social media text corpora for various categories. Since, social media data is generated via individuals, it is important to annotate the text for the individuals demographic attributes to enable a socio-technical analysis of the corpora. Furthermore, when analyzing a large data-set we can often annotate a small sample of data and then train a prediction model using this sample to annotate the full data for the relevant categories. We use a case study of a Facebook comment corpora on student loan discussion which was annotated for gender, military affiliation, age-group, political leaning, race, stance, topicalilty, neoliberlistic views and civility of the comment. We release three datasets of Facebook comments for further research at: https://github.com/socialmediaie/StudentDebtFbComments
We apply rule induction, classifier combination and meta-learning (stacked classifiers) to the problem of bootstrapping high accuracy automatic annotation of corpora with pronunciation information. The task we address in this paper consists of generating phonemic representations reflecting the Flemish and Dutch pronunciations of a word on the basis of its orthographic representation (which in turn is based on the actual speech recordings). We compare several possible approaches to achieve the text-to-pronunciation mapping task: memory-based learning, transformation-based learning, rule induction, maximum entropy modeling, combination of classifiers in stacked learning, and stacking of meta-learners. We are interested both in optimal accuracy and in obtaining insight into the linguistic regularities involved. As far as accuracy is concerned, an already high accuracy level (93% for Celex and 86% for Fonilex at word level) for single classifiers is boosted significantly with additional error reductions of 31% and 38% respectively using combination of classifiers, and a further 5% using combination of meta-learners, bringing overall word level accuracy to 96% for the Dutch variant and 92% for the Flemish variant. We also show that the application of machine learning methods indeed leads to increased insight into the linguistic regularities determining the variation between the two pronunciation variants studied.
Crosslingual word embeddings represent lexical items from different languages in the same vector space, enabling transfer of NLP tools. However, previous attempts had expensive resource requirements, difficulty incorporating monolingual data or were unable to handle polysemy. We address these drawbacks in our method which takes advantage of a high coverage dictionary in an EM style training algorithm over monolingual corpora in two languages. Our model achieves state-of-the-art performance on bilingual lexicon induction task exceeding models using large bilingual corpora, and competitive results on the monolingual word similarity and cross-lingual document classification task.
Social networks are widely used for information consumption and dissemination, especially during time-critical events such as natural disasters. Despite its significantly large volume, social media content is often too noisy for direct use in any application. Therefore, it is important to filter, categorize, and concisely summarize the available content to facilitate effective consumption and decision-making. To address such issues automatic classification systems have been developed using supervised modeling approaches, thanks to the earlier efforts on creating labeled datasets. However, existing datasets are limited in different aspects (e.g., size, contains duplicates) and less suitable to support more advanced and data-hungry deep learning models. In this paper, we present a new large-scale dataset with ~77K human-labeled tweets, sampled from a pool of ~24 million tweets across 19 disaster events that happened between 2016 and 2019. Moreover, we propose a data collection and sampling pipeline, which is important for social media data sampling for human annotation. We report multiclass classification results using classic and deep learning (fastText and transformer) based models to set the ground for future studies. The dataset and associated resources are publicly available. https://crisisnlp.qcri.org/humaid_dataset.html
Considering the importance of building a good Visual Dialog (VD) Questioner, many researchers study the topic under a Q-Bot-A-Bot image-guessing game setting, where the Questioner needs to raise a series of questions to collect information of an undisclosed image. Despite progress has been made in Supervised Learning (SL) and Reinforcement Learning (RL), issues still exist. Firstly, previous methods do not provide explicit and effective guidance for Questioner to generate visually related and informative questions. Secondly, the effect of RL is hampered by an incompetent component, i.e., the Guesser, who makes image predictions based on the generated dialogs and assigns rewards accordingly. To enhance VD Questioner: 1) we propose a Related entity enhanced Questioner (ReeQ) that generates questions under the guidance of related entities and learns entity-based questioning strategy from human dialogs; 2) we propose an Augmented Guesser (AugG) that is strong and is optimized for the VD setting especially. Experimental results on the VisDial v1.0 dataset show that our approach achieves state-of-theart performance on both image-guessing task and question diversity. Human study further proves that our model generates more visually related, informative and coherent questions.