Do you want to publish a course? Click here

Logic-level Evidence Retrieval and Graph-based Verification Network for Table-based Fact Verification

296   0   0.0 ( 0 )
 Added by Qi Shi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that contain rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.

rate research

Read More

267 - Fei Wang , Kexuan Sun , Jay Pujara 2021
Tables provide valuable knowledge that can be used to verify textual statements. While a number of works have considered table-based fact verification, direct alignments of tabular data with tokens in textual statements are rarely available. Moreover, training a generalized fact verification model requires abundant labeled training data. In this paper, we propose a novel system to address these problems. Inspired by counterfactual causality, our system identifies token-level salience in the statement with probing-based salience estimation. Salience estimation allows enhanced learning of fact verification from two perspectives. From one perspective, our system conducts masked salient token prediction to enhance the model for alignment and reasoning between the table and the statement. From the other perspective, our system applies salience-aware data augmentation to generate a more diverse set of training instances by replacing non-salient terms. Experimental results on TabFact show the effective improvement by the proposed salience-aware learning techniques, leading to the new SOTA performance on the benchmark. Our code is publicly available at https://github.com/luka-group/Salience-aware-Learning .
The problem of verifying whether a textual hypothesis holds based on the given evidence, also known as fact verification, plays an important role in the study of natural language understanding and semantic representation. However, existing studies are mainly restricted to dealing with unstructured evidence (e.g., natural language sentences and documents, news, etc), while verification under structured evidence, such as tables, graphs, and databases, remains under-explored. This paper specifically aims to study the fact verification given semi-structured data as evidence. To this end, we construct a large-scale dataset called TabFact with 16k Wikipedia tables as the evidence for 118k human-annotated natural language statements, which are labeled as either ENTAILED or REFUTED. TabFact is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning. To address these reasoning challenges, we design two different models: Table-BERT and Latent Program Algorithm (LPA). Table-BERT leverages the state-of-the-art pre-trained language model to encode the linearized tables and statements into continuous vectors for verification. LPA parses statements into programs and executes them against the tables to obtain the returned binary value for verification. Both methods achieve similar accuracy but still lag far behind human performance. We also perform a comprehensive analysis to demonstrate great future opportunities. The data and code of the dataset are provided in url{https://github.com/wenhuchen/Table-Fact-Checking}.
Given a natural language statement, how to verify whether it is supported, refuted, or unknown according to a large-scale knowledge source like Wikipedia? Existing neural-network-based methods often regard a sentence as a whole. While we argue that it is beneficial to decompose a statement into multiple verifiable logical points. In this paper, we propose LOREN, a novel approach for fact verification that integrates both Logic guided Reasoning and Neural inference. The key insight of LOREN is that it decomposes a statement into multiple reasoning units around the central phrases. Instead of directly validating a single reasoning unit, LOREN turns it into a question-answering task and calculates the confidence of every single hypothesis using neural networks in the embedding space. They are aggregated to make a final prediction using a neural joint reasoner guided by a set of three-valued logic rules. LOREN enjoys the additional merit of interpretability -- it is easy to explain how it reaches certain results with intermediate results and why it makes mistakes. We evaluate LOREN on FEVER, a public benchmark for fact verification. Experiments show that our proposed LOREN outperforms other previously published methods and achieves 73.43% of the FEVER score.
This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed framework inputs segment-wise speaker embeddings from an enrollment and a test utterance and directly outputs a similarity score. We first construct a graph using segment-wise speaker embeddings and then input these to graph attention networks. After a few graph attention layers with residual connections, each node is projected into a one-dimensional space using affine transform, followed by a readout operation resulting in a scalar similarity score. To enable successful adaptation for speaker verification, we propose techniques such as separating trainable weights for attention map calculations between segment-wise speaker embeddings from different utterances. The effectiveness of the proposed framework is validated using three different speaker embedding extractors trained with different architectures and objective functions. Experimental results demonstrate consistent improvement over various baseline back-end classifiers, with an average equal error rate improvement of 20% over the cosine similarity back-end without test time augmentation.
Fact verification is a challenging task that requires simultaneously reasoning and aggregating over multiple retrieved pieces of evidence to evaluate the truthfulness of a claim. Existing approaches typically (i) explore the semantic interaction between the claim and evidence at different granularity levels but fail to capture their topical consistency during the reasoning process, which we believe is crucial for verification; (ii) aggregate multiple pieces of evidence equally without considering their implicit stances to the claim, thereby introducing spurious information. To alleviate the above issues, we propose a novel topic-aware evidence reasoning and stance-aware aggregation model for more accurate fact verification, with the following four key properties: 1) checking topical consistency between the claim and evidence; 2) maintaining topical coherence among multiple pieces of evidence; 3) ensuring semantic similarity between the global topic information and the semantic representation of evidence; 4) aggregating evidence based on their implicit stances to the claim. Extensive experiments conducted on the two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification. The source code can be obtained from https://github.com/jasenchn/TARSA.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا